

Python	Programming
	

Practical	Python	Programming	For
Beginners	and	Experts

Jonathan	Yates

Text	Copyright	©	Jonathan	Yates
All	rights	reserved.	No	part	of	this	guide	may	be	reproduced	in	any	form	without

permission	in	writing	from	the	publisher	except	in	the	case	of	brief	quotations	embodied
in	critical	articles	or	reviews.

Legal	&	Disclaimer

This	document	is	geared	towards	providing	exact	and	reliable	information	in	regards	to	the
topic	 and	 issues	 covered.	 The	 publication	 is	 sold	 on	 the	 idea	 that	 the	 publisher	 is	 not
required	to	render	an	accounting,	officially	permitted,	or	otherwise,	qualified	services.	If
advice	is	necessary,	 legal	or	professional,	a	practiced	individual	 in	 the	profession	should
be	ordered.

	

-	 From	 a	 Declaration	 of	 Principles	 which	 was	 accepted	 and	 approved	 equally	 by	 a
Committee	 of	 the	 American	 Bar	 Association	 and	 a	 Committee	 of	 Publishers	 and
Associations.

	

In	 no	way	 is	 it	 legal	 to	 reproduce,	 duplicate,	 or	 transmit	 any	 part	 of	 this	 document	 by
either	 electronic	 means	 or	 printed	 format.	 Recording	 of	 this	 publication	 is	 strictly
prohibited,	and	any	storage	of	this	document	is	not	allowed	unless	with	written	permission
from	the	publisher.	All	rights	reserved.

	

The	information	provided	herein	is	stated	to	be	truthful	and	consistent,	in	that	any	liability,
regarding	 inattention	or	 otherwise,	 by	 any	usage	or	 abuse	of	 any	policies,	 processes,	 or
directions	contained	within	is	 the	solitary	and	utter	responsibility	of	 the	recipient	reader.
Under	 no	 circumstances	 will	 any	 legal	 responsibility	 or	 blame	 be	 held	 against	 the
publisher	 for	 any	 reparation,	 damages,	 or	monetary	 loss	 due	 to	 the	 information	 herein,
either	directly	or	indirectly.

	

Respective	authors	own	all	copyrights	not	held	by	the	publisher.

	

The	information	herein	is	offered	for	informational	purposes	solely	and	is	universal	as	so.
The	 presentation	 of	 the	 information	 is	 without	 a	 contract	 or	 any	 type	 of	 guarantee
assurance.

	

The	trademarks	that	are	used	are	without	any	consent,	and	the	publication	of	the	trademark
is	 without	 permission	 or	 backing	 by	 the	 trademark	 owner.	 All	 trademarks	 and	 brands
within	 this	 book	 are	 for	 clarifying	 purposes	 only	 and	 are	 the	 owned	 by	 the	 owners
themselves,	not	affiliated	with	this	document.

Table	of	Contents
Introduction

Chapter	1:	An	Introduction	to	Python

Chapter	2:	Installing	Python	and	Setting	up	the	Environment

Chapter	3:	Common	Python	Syntax

Chapter	4:	Types	of	Variables	in	Python

Chapter	5:	Using	Operators	and	Operands

Chapter	6:	Using	Sequential	Loops

Chapter	7:	Decision	Making	and	Expressions

Chapter	8:		Strings	and	Functions	in	Python

Chapter	9:	Creating,	Using,	and	Modifying	Lists

Chapter	10:	Tuples	and	Data	Types

Chapter	11:	Dictionary	Operation	and	Functions

Chapter	12:	Mastering	Date	and	Time

Chapter	13:	User	Defined	Functions

Chapter	14:	Organizing	Code	with	Modules

Chapter	15:	I/O	Input	Used	in	Python

Chapter	16:	Exceptions	and	Assertions

Chapter	17:	Object	Oriented	Programming

Chapter	18:	Python	Regular	Expressions.

Chapter	19:	Python	Multithreaded	Programming

Chapter	20:	Conclusion

Chapter	1
An	Introduction	to	Python
	

Are	 you	 aware	 that	 websites	 like	 YouTube	 and	 Dropbox	 make	 use	 of	 Python
Programming	in	their	source	code?	Python	is	a	commonly	used	language	which	one	can
easily	understand	and	apply.	You	can	make	nearly	anything	using	Python.	Most	systems
today	 (Mac,	Linux,	UNIX,	 etc.)	 have	Python	 installed	 as	 a	default	 setting	 since	 it	 is	 an
open	source	and	free	language.	Upon	reading	this	book,	you	are	going	to	become	fluent	in
this	 awesome	 code	 language	 and	 see	 it	 applied	 to	 a	 variety	 of	 examples.	 No	 type
declaration	of	methodology,	parameters,	 functions,	or	variables	 (like	 in	other	 languages)
are	found	in	Python	making	its	code	concise	and	easy.	As	I	said	earlier,	you	can	use	the
language	 in	 everything	 if	 you	want	 to	 build	 a	website,	make	 a	 game,	 or	 even	 create	 a
search	engine.	The	big	plus	of	using	Python	is,	an	explicit	compiler	is	not	necessary	since
it’s	an	entirely	interpreted	language	(Perl,	Shell,	etc.).

	

File	 extension	 which	 is	 used	 by	 Python	 source	 file	 is	 “.py”	 and	 it	 is	 a	 case-sensitive
language,	 so	 “P”	 and	 “p”	would	 be	 considered	 as	 two	different	 variables.	Also,	 Python
figures	out	the	variable	type	on	its	own,	for	example,	if	you	put	x=4	and	y=’Python’	then	it
will	consider	x	as	an	 integer	and	y	as	a	string.	We	are	going	 to	 learn	all	 these	basics	 in
detail	 in	further	chapters.	Before	we	move	forward,	a	few	important	points	to	remember
are:

	

1.	For	assigning	a	value	“=”	is	used,	and	for	comparison	“==”	is	used.	Example,
x=4,	y=8,	x==y

2.	“print”	is	used	to	print	results.

3.	All	the	mathematical	operations	like	+,	-,	*,	/,	%	are	used	with	numbers

4.	Variable	 is	 created	when	a	value	 is	 assigned	 to	 it.	Example,	 a=5	will	 create	 a
variable	named	“a”	which	has	an	integer	value	of	5.	There	is	no	need	to	define	it
beforehand.

5.	 “+”	 can	 also	 be	 used	 to	 concatenate	 two	 string.	 Example,	 z=	 “Hi”,	 z=	 z	 +

“Python”

6.	For	logical	operations	“and”,	“or”,	“not”	are	used	instead	of	symbols.

We	 use	 three	 general	 data	 types:	 integer	 (by	 default	 for	 numbers),	 floats	 (a=3.125)	 and
string.	The	string	is	shown	by	either	“”	(double	quotes)	or	‘’	(single	quotes).	We	will	look
at	all	the	types	of	data	with	various	examples	in	the	upcoming	chapters.

	

Let’s	look	at	the	step	by	step	guide	to	install	Python	on	a	Windows	operating	system.	As
mentioned	earlier,	if	you	are	using	another	operating	system	like	UNIX	or	Linux	or	Mac
then	Python	should	be	installed	already	and	ready	to	use.	You	have	to	use	“%python”	to
get	 the	details	on	Linux,	press	“CTRL	+	D”	to	exit.	For	running	it	on	UNIX,	“%python
filename.py”	is	used.	Python	prompts	with	three	“greater	than”	symbol	(>>>).

Chapter	2
Installing	Python	and	Setting	up	the	Environment
	

In	this	chapter,	we	are	going	to	see	a	step	by	step	guide	to	download	and	install	the	Python
language	 interpreter.	 After	 installation	 of	 the	 interpreter,	 we	 will	 integrate	 and	 set	 up
Python	development	environment	with	Eclipse	IDE.	

Python	 programming	 language	 is	 available	 for	 all	 of	 the	 three	 known	 platforms	 for
Windows,	Linux/Unix,	and	Mac	OS.	Below	are	the	links	from	where	Python	interpreters
can	be	downloaded	for	these	environments.

	

Windows	platform

Python	interpreter	can	be	downloaded	for	Windows	platform	using	the	link	below.

https://www.python.org/downloads/windows/

Options	available	on	Python	website	are	as	follows:

Python	3.4.4	-	2015-12-21

Download	Windows	x86	MSI	Installer

Download	Windows	x86-64	MSI	installer

Download	Windows	help	file

Download	Windows	debug	information	files	for	64-bit	binaries

Download	Windows	debug	information	files

	

In	this	tutorial,	we	are	going	to	use	Windows	platform	to	install	Python	3.4.4	along	with
Eclipse	IDE	to	set	up	a	development	environment.

	

LINUX/UNIX	platform

If	you	are	not	able	to	find	Python	on	your	Linux	or	Unix	OS,	then	Python	interpreter	can

https://www.python.org/downloads/windows/

be	downloaded	for	LINUX	or	UNIX	platform	from	the	link	below.

https://www.python.org/downloads/

A	 different	 Linux	 version	 uses	 different	 package	 managers	 for	 installation	 of	 new
packages.	 For	 example,	 on	Ubuntu,	 Python	 can	 be	 installed	 using	 the	 below	 command
from	the	terminal.

	

$sudo	apt-get	install	python3-minimal

	

It	is	installed	from	source	using	the	below	command.

Download	 Gzipped	 source	 tarball	 from	 Python’s	 download	 URL:
https://www.python.org/ftp/python/3.5.1/Python-3.5.1.tgz

Extract	the	tarball

tar	xvfz	Python-3.5.1.tgz

Configure	and	Install:

cd	Python-3.5.1

./configure	—prefix=/opt/python3.5.1

make	

sudo	make	install

	

Mac	OS	Platform

Python	interpreter	can	be	downloaded	for	Mac	OS	platform	from	the	link	below.

https://www.python.org/downloads/mac-osx/

Options	available	on	Python	website	are	as	follows.

Python	3.4.4	-	2015-12-21

https://www.python.org/downloads/
https://www.python.org/downloads/mac-osx/

Download	Mac	OS	X	64-bit/32-bit	installer

Download	Mac	OS	X	32-bit	i386/PPC	installer

	

Steps	to	install	Python	on	Windows	Platform

Please	follow	the	below	steps:

1.	 Check	 for	 Windows	 installer	 if	 it	 is	 32-bit	 or	 64-bit.	 Accordingly,	 download
Python	version	for	Windows	platform	for	the	given	link.

	

2.	 Once	downloaded,	click	on	 the	 installer.	The	below	screen	will	be	visible	which
will	trigger	Python	installation	on	Windows.

	

	

3.	 Choose	 the	 first	 option	 as	 “Install	 for	 all	 users”	 and	 click	 on	 the	 next	 button	 to
proceed.

	

4.	 Next,	the	system	will	ask	to	select	the	destination	directory.	Choose	the	directory
as	shown	below	and	click	on	Next	button.

	

	

5.	 Next,	 the	system	will	ask	 to	customize	Python	3.4.4.	Keep	 the	default	 setup	and
click	on	the	Next	button	as	shown	in	the	below	screenshot.

	

	

6.	 Installer	will	 start	 the	 installation	which	will	 take	several	minutes	and	 the	below
screenshot	will	be	visible	during	this	point	of	time.

	

	

7.	 Once	 Python	 interpreter	 installation	 is	 completed,	 click	 on	 the	 Finish	 button	 to
complete	the	installation	on	Windows	platform.

	

	

Steps	to	set	up	Python	development	environment	on	Eclipse	IDE

	

Please	follow	the	below	steps:

1.	 Download	the	Eclipse	from	the	link	below.	Choose	the	latest	stable	version	of	the
Eclipse	and	make	sure	that	if	your	machine	is	64-bit	then	chose	64-bit	Eclipse.	In
this	tutorial,	Eclipse	MARS.1	version	is	used.

https://eclipse.org/downloads

	

2.	 Click	 on	 the	 elipse.exe	 to	 open	 the	 Eclipse	 which	 will	 ask	 to	 choose	 a	 local
directory	as	its	workspace	as	shown	in	the	below	screenshot.

https://eclipse.org/downloads

	

3.	 Choose	or	create	a	directory	on	any	available	drive	and	click	on	the	OK	button	to
start	eclipse.

	

	

4.	 On	the	Eclipse,	navigate	as	Help	->	Install	New	Software…

	

	

5.	 It	will	 open	 a	 dialogue	box	 in	Eclipse	 as	 shown	 in	 the	 below	 screenshot.	 In	 the
textbox	“work	with:”	enter	 the	URL	as	http://pydev.org/updates	and	click	on	 the
Add	button.	Next,	select	the	checkbox	as	“PyDev”	and	click	on	the	Next	button.

http://pydev.org/updates

	

6.	 Next,	 the	 system	 will	 ask	 to	 read	 and	 accept	 or	 decline	 the	 license	 agreement.
Accept	the	license	agreement	in	order	to	proceed	the	current	software	installation
and	click	on	the	Finish	button	as	shown	in	the	below	screenshot.

	

7.	 The	 step	 above	will	 complete	 the	 installation	of	PyDev	 software	on	 the	Eclipse.
After	installation,	it	will	prompt	to	restart	Eclipse.	Upon	Eclipse	restart,	the	Python
development	environment	is	ready	to	use	on	Eclipse.

	

First	Python	project	on	Eclipse

	

Please	follow	below	steps.

1.	 Left-hand	 side	 of	 Eclipse	 has	 Project	 Explorer.	 Right	 click	 in	 that	 region	 or
navigate	as	New	->	Project.	Select	PyDev	from	the	Wizard	as	shown	in	the	below
screenshot.

	

	

2.	 Select	PyDev	Project	option	from	Wizard	and	click	on	next	button	to	proceed.

	

3.	 It	 will	 open	 a	 PyDev	 project	 dialog	 box	 asking	 for	 Project	 name,	 project	 type,
grammar	version	and	interpreter	configuration.

	

4.	 Give	 the	 project	 name	 as	 “MyFirstPythonProject”,	 project	 type	 as	 Python,	 and
grammar	version	as	3.0-3.5.

	

5.	 Click	on	the	given	link	to	configure	the	Python	interpreter	as	shown	below.	Here
we	just	need	to	give	the	path	of	python.exe	where	we	installed	Python	on	C	drive.

	

6.	 Click	on	the	Interpreter	link;	it	will	ask	for	how	to	configure	the	interpreter	since
we	know	the	Python	installation	path,	therefore,	select	“Manual	Config”	option.	

	

	

7.	 Click	 on	 the	 “New”	 button	 present	 at	 the	 top	 right	 corner	 and	 in	 the	 opened
dialogue	box,	enter	the	interpreter	name	and	the	interpreter	executable	path.	Since
we	are	using	Python	version	as	3.4.4,	therefore	enter	the	name	as	“Python	3.4.4”
and	executable	path	as	C:\Python34\python.exe.	Click	OK	button	to	complete	this
step.

	

	

8.	 A	 new	 dialogue	 box	 will	 be	 opened	 as	 shown.	 This	 step	 will	 ask	 to	 select	 all
folders	that	are	required	to	be	added	to	the	SYSTEM	Python	path.	Select	all	and
click	on	the	OK	button	to	complete	this	step.

	

9.	 Next,	click	on	the	Apply	button	and	then	the	OK	button	to	complete	the	setup	for
Python	first	project	as	shown	in	the	below	screenshot.

	

	

10.																			Lastly,	click	on	the	Finish	button	to	complete	first	“PyDev	Project”	set
up	in	Eclipse	as	shown	in	the	below	screenshot.

	

11.																			By	this	step,	Python	first	project	directory	structure	and	path	setup	are
ready	as	shown	in	the	below	screenshot.

	

	

12.																			At	the	source	directory,	right	click	and	navigate	as	New	->	PyDev
Module.

	

	

13.																			This	will	open	a	dialogue	box	asking	to	enter	package	and	PyDev
module	name.	Enter	the	name	as	“FirstPython”	and	click	on	the	Finish	button	to
complete	this	step	as	shown	in	the	below	screenshot.

	

14.																			The	step	above	will	open	up	another	dialogue	box,	asking	you	to	select
the	template	for	the	Python	project.	Choose	here	<Empty>	and	click	on	the	OK
button.

	

	

15.																			This	will	open	the	FirstPython.py	file	where	we	can	edit	and	write	the
Python	program	code	as	shown	in	the	below	screenshot.	Python	program	files	have
an	extension	as	.py.

	

16.																			To	run	the	Python	program	above,	press	Ctrl+F11	keys,	it	will	open	up

below	dialogue	box.	Select	“Python	Run”	option	and	click	OK	button	to	complete
this	step.

	

	

	

	

	

	

	

	

17.		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	The	final	output	will	be	displayed	at	the	bottom	of	the	Eclipse	in	the
console	as	shown	in	the	below	screenshot.

	

This	completes	the	installation,	environment	setup	and	execution	for	first	Python	program.
In	 the	 next	 chapter,	 we	 are	 going	 to	 learn	 about	 the	 various	 syntax	 used	 in	 Python
programming.

Chapter	3
Common	Python	Syntax
	

Python	Identifiers

An	 identifier	 in	 any	 programming	 language	 is	 the	 name	 given	 to	 identify	 a	 variable,
function,	class,	module	or	another	object.	In	Python	language,	an	identifier	begins	with	an
alphabetic	letter	A	to	Z	or	a	to	z	or	an	underscore	(_)	followed	by	zero	or	more	alphabetic
letters,	underscores	and	digits	(0	to	9).

Python	programming	 language	does	not	allow	special	characters	such	as	@,	$,	 /,	and	%
within	identifiers.	Python	is	a	case	sensitive	programming	language.	Therefore,	identifiers
such	 as	 ‘Python’	 and	 ‘python’	 are	 two	 different	 identifiers	 in	 Python	 programming
language.

	

Below	are	the	naming	conventions	for	identifiers	in	Python.

Class	name	in	Python	always	begins	with	an	uppercase	letter	and	all	other	Python
identifiers	starts	with	a	lowercase	letter.

A	 Python	 identifier	 is	 private	 when	 such	 identifier	 begins	 with	 a	 single	 leading
underscore.

A	Python	identifier	is	strongly	private	when	such	identifier	begins	with	two	leading
underscores.

A	Python	identifier	 is	a	 language-defined	special	name	when	such	identifier	ends
with	two	trailing	underscores.

	

Python	Reserve	Words

Reserve	 words	 in	 any	 programming	 language	 are	 special	 commands	 that	 compiler	 or
interpreters	understands,	and	these	reserve	words	cannot	be	used	as	a	constant	or	variable,
or	any	other	identifier	names	in	that	programming	language.

Python	has	the	following	reserve	words,	and	all	such	keywords	contain	lowercase	letters

only.

and def exec if not return

assert del finally import or try

break elif for in pass while

class else from is print with

continue except global lambda raise yield

Python	Keywords

Lines	and	Indentations

Any	block	of	code	 in	Python	are	denoted	by	 line	 indentation,	which	 is	 rigidly	enforced.
Python	 has	 no	 braces	 to	 denote	 blocks	 of	 code	 for	 class	 definitions	 and	 function
definitions	or	flow	control.	The	number	of	spaces	used	in	an	indentation	can	be	variable
but	for	all	statements	in	a	particular	block,	the	number	of	spaces	should	always	be	same.
For	example,	below,	the	block	is	correctly	indented	and	therefore,	there	is	no	error.

In	 the	 next	 example,	 since	 the	 last	 statement	 in	 the	 block	 is	 not	 properly	 indented,
consequently,	the	block	has	an	error.

Therefore,	the	conclusion	is	that	in	Python	programming	language,	all	the	continuous	lines
indented	with	the	same	number	of	spaces	would	form	a	block.

	

Representing	a	Statement	as	Multi-Line

Statements	in	the	Python	language	ends	with	a	new	line.	If	the	statement	is	required	to	be
continued	 into	 the	 next	 line,	 then	 the	 line	 continuation	 character	 (\)	 is	 used	 in	 Python
language.	 This	 line	 continuation	 character	 (\)	 denotes	 that	 the	 statement	 line	 should
continue	as	shown	in	the	below	screenshot.	In	the	below	example,	we	have	three	variables
result1,	 result2	 and	 result3	 and	 the	 final	 output	 is	 copied	 to	 the	 variable	 named	 result.
Instead	of	writing	the	equation	statement	in	a	single	line	(result=result1+result2+result3),
here,	we	have	used	line	continuation	character	(\)	so	that,	it	could	be	written	in	three	lines
but	represents	a	single	statement	in	Python	language.

	

	

Also,	a	Python	statement	which	is	defined	within	braces	(),	{}	and	[]	does	not	require	the
line	continuation	character	(\)	when	written	as	a	multi-line	statement.	This	kind	of	Python
statements	 are	 still	 interpreted	 as	 a	 single	 statement	 without	 the	 use	 of	 the	 line
continuation	character	(\).

Sanjeetkumar Singh
Underline

	

Quotation	in	Python

The	Python	language	permits	the	use	of	single	(‘),	double	(“)	and	triple	(”’	or	”””)	codes	to
represent	 a	 string	 literal,	making	 sure	 that	 the	 same	 type	 of	 quote	 begins	 and	 ends	 that
string.	In	the	below	example,	single,	double	and	triple	codes	are	used	to	represent	a	string
in	 a	 word,	 sentence	 or	 paragraph.	 When	 we	 print	 this	 variable,	 they	 print	 the	 string
irrespective	of	single,	double	and	triple	codes	used	for	representing	string	literal	in	Python
language.

	

	

Comments	in	Python

Any	comment	in	the	Python	language	is	represented	by	a	hash	sign	(#)	provided	it	is	not
used	inside	a	string	literal	between	codes	(single,	double	or	triple).	All	characters	after	the
hash	sign	(#)	and	up	to	the	end	of	the	physical	line	are	the	part	of	comment	and	Python
interpreter	 ignores	 this	 statement	 while	 interpreting	 the	 whole	 program.	 In	 the	 below
example,	the	interpreter	will	just	print	the	string	present	inside	the	print	command	and	will
ignore	the	parts	mentioned	after	a	sign	before	and	after	as	comments.

	

	

Using	Blank	Lines

A	 blank	 line	 in	 the	 Python	 language	 is	 either	 a	 line	 with	 white	 spaces	 or	 a	 line	 with
comments	 (i.e.	 statement	 starting	 with	 a	 hash	 sign	 (#)).	 The	 Python	 interpreter	 while
interpreting	 a	 blank	 line,	 ignores	 it	 and	 no	machine	 readable	 code	will	 be	 generated.	A
multiline	statement	in	Python	is	terminated	after	entering	an	empty	physical	line.

	

Waiting	for	the	User

Using	 the	Python	programming	 language,	we	can	set	up	 the	prompt	which	can	accept	a
user’s	input.	The	following	line	of	the	program	will	display	a	prompt,	which	says	“Press
any	key	to	exit”,	and	waits	for	the	user	input	or	action.

	

#!	/usr/bin/python

raw_input	 (“\n\nPress	 any	 key	 to
exit.”)

	

Also,	 in	 the	above	statement,	we	have	used	“\n\n”.	This	 is	used	 to	create	 two	new	lines
before	displaying	 the	 actual	 line.	Once	 the	key	 is	 pressed	by	 the	user,	 the	program	will
end.	By	doing	 this,	we	 can	keep	 a	window	console	open	until	 the	user	has	 finished	his
work	with	an	application.

	

Multiple	Statements	on	a	Single	Line

The	 Python	 language	 allows	 to	 write	 multiple	 statements	 on	 a	 single	 line	 if	 they	 are

separated	by	a	semicolon	(;)	as	demonstrated	in	the	example	below.

	

	

Multiple	Statement	Groups	as	Suites	and	Header	Line

In	the	Python	language,	a	group	of	individual	statements	making	a	single	code	block	are
called	 suites.	Whereas	 the	compound	or	 complex	 statements,	 such	as	 if,	 def,	while,	 and
class	require	a	suite	and	a	header	line.

Header	line	is	the	one	that	begins	a	statement	(with	the	keyword	like	if,	elif,	else,	etc.)	and
ends	with	a	colon	(:)	and	is	followed	by	one	or	more	lines	which	makes	up	the	suite	as
demonstrated	in	the	below	example.	Here,	if	strg==’Hello	World’:	is	a	header	line	which
is	followed	by	a	suite	(suite	=	‘Found’).

	

	

Command	Line	Arguments

On	UNIX	OS,	which	has	Python	interpreter	installed,	we	can	take	help	and	see	all	the	lists
of	 the	 functions.	These	 are	 the	 basic	 ones.	The	below	 screenshot	 demonstrates	 the	 help
command	on	the	UNIX	system	and	all	the	functions	or	short	codes	used.

	

$	python	-h

usage:	python	[option]	…	[-c	cmd	|	-m	mod	|	file	|	-]	[arg]	…

Options	and	arguments	(and	corresponding	environment	variables):

-c	cmd:	program	passed	in	as	string	(terminates	option	list)

-d					:	debug	output	from	parser	(also	PYTHONDEBUG=x)

-E					:	ignore	environment	variables	(such	as	PYTHONPATH)

-h					:	print	this	help	message	and	exit

[etc.]

Chapter	4
Types	of	Variables	in	Python
	

Variables	 in	 any	 programming	 language	 are	 the	 names	 of	 the	 reference	 to	 the	 reserved
memory	 locations	 which	 are	 used	 to	 store	 values.	 Similarly,	 when	 we	 are	 creating	 a
variable	in	Python	then	we	are	reserving	some	space	in	the	memory.

These	 variables	 have	 their	 own	 data	 type.	 Based	 on	 the	 type,	 the	 interpreter	 allocates
memory	and	decides	what	kind	of	data	can	be	stored	in	these	reserved	memory	locations.
Characters,	 integers,	decimals,	etc.	are	 the	different	data	 types	which	can	be	assigned	 to
such	variables.

	

Assigning	Values	to	Variables

In	 the	 Python	 language,	 equal	 sign	 (=)	 is	 used	 to	 assign	 values	 to	 the	 variables.	 Such
variables	 do	 not	 need	 explicit	 declaration.	 When	 we	 assign	 a	 value	 to	 a	 variable,	 the
declaration	or	creation	happens	automatically.

The	operand	to	the	left	of	the	equal	sign	(=)	is	the	name	of	the	variable	and	the	operand	to
the	right	of	the	equal	sign	(=)	is	the	value	stored	in	the	variable.	This	is	demonstrated	in
the	below	example.

In	 the	 above	 example,	 the	 variable	 name	 ‘number’	 has	 an	 integer	 value	 therefore,	 it
behaves	 as	 an	 integer	 without	 any	 data	 type	 declaration.	 Similarly,	 the	 variable	 name
‘decimal’	has	 a	 floating	value	 and	variable	name	 ‘name’	has	 a	 string	value.	Python	 is	 a
THvery	flexible	language	since	it	automatically	determines	the	data	type	once	the	value	is

assigned	to	the	variable.

	

Multiple	Assignment

The	Python	language	allows	the	assignment	of	a	single	value	to	more	than	one	variables
and	multiple	values	to	multiple	variables	which	are	separated	by	commas	in	a	single	line
as	demonstrated	in	the	below	example.

In	the	first	case	(many-t0-one),	the	single	value	1000	is	assigned	to	many	variables	a,	b,	c
and	d.

In	 the	 second	 case	 (many-to-many),	 multiple	 values	 (“Jose”,	 “Patrick”,	 “Peter”)	 are
assigned	to	multiple	variables	k,	l	and	m.	However,	here	is	one	to	one	mapping	between	a
variable	and	a	value,	e.g.	variable	k	will	contain	value	as	“Jose”,	variable	 l	will	contain
value	as	“Patrick”	and	variable	m	will	contain	value	as	“Peter”.

	

Standard	Data	Types	in	Python

In	 Python,	 the	 data	 is	 stored	 in	memory	 which	 can	 be	 of	 many	 types.	 For	 example,	 a
person’s	birth	year	is	stored	as	a	numeric	value	and	his	or	her	qualifications	are	stored	as
alphanumeric	 characters.	 Depending	 on	 the	 type	 of	 value,	 the	 Python	 has	 different
standard	data	types	that	are	used	to	define	the	type	of	value	a	variable	can	contain.

Python	 language	 has	 five	 standard	 data	 types.	We	 are	 going	 to	 discuss	 them	 in	 detail.
These	are:

							Numbers

							Strings

							Lists

							Tuples

							Dictionary

	

Python	Numbers

In	 Python	 language,	 the	 number	 data	 type	 are	 used	 to	 store	 numeric	 values.	 Numeric
variable	 are	 created	 automatically	 in	 Python	 when	 we	 assign	 a	 numeric	 value	 to	 it	 as
shown	in	the	below	example.

	

	

Python	supports	below	four	different	numerical	types.

							int	(signed	integers)

							long	(long	integers,	they	can	also	be	represented	in	hexadecimal	and	octal)

							float	(floating	point	real	values)

							complex	(complex	numbers)

Below	are	the	examples	of	number	objects	in	Python	language.

Int Long float Complex

40 7965391L 0.0 8.14j

900 -0x29546L 17.90 675.j

-589 0455L -31.9 23.8922e-
36j

050 0xABDDAECCBEABCBFEACl 62.3+e68 .6776j

-0630 563213626792L -560. -.6844+0J

-0x1290 -032318432823L -82.53e200 4e+86J

0x37 -5627995245529L 40.2-E52 7.59e-7j

	

Below	are	few	things	to	note	about	Python	number	objects.

	 	 	 	 	 	 	A	complex	number	consists	of	an	ordered	pair	of	real	floating-point	numbers
denoted	 by	 (real	 +	 imgj),	where	 real	 and	 img	 are	 the	 real	 numbers	 and	 j	 is	 the
imaginary	number	unit.

							Python	displays	long	integers	(data	type	number)	with	an	uppercase	L.

	 	 	 	 	 	 	Python	 language	 allows	 to	 use	 a	 lowercase	 L	with	 long	 data	 type	 number,
however	it	is	recommended	to	use	only	an	uppercase	L	in	order	to	avoid	confusion
with	the	number	1.

	

In	Python,	we	 can	delete	 the	 reference	 to	 a	 number	 object	 (variable)	 by	using	 the	 ‘del’
statement.	Given	below	is	the	syntax	of	the	‘del’	statement.

	

del
variable1[,variable2[,variable3[….,variableN]]]]

	

Using	the	above	statement,	we	can	delete	a	single	variable	or	multiple	variables	by	using
the	‘del’	statement	as	shown	in	the	below	example.

	

	

In	 the	 above	 example,	 since	 we	 have	 deleted	 variable2	 using	 the	 ‘del’	 command,	 this
variable	do	not	exist	anymore	when	we	tried	to	print	it.

	

Strings	in	Python

In	 Python	 language,	 Strings	 are	 identified	 as	 a	 contiguous	 set	 of	 characters	 which	 are
represented	 within	 the	 quotation	marks.	 Python	 language	 permits	 the	 use	 of	 single	 (‘),
double	 (“)	 and	 triple	 (”’	 or	 ”””)	 codes	 to	 represent	 a	 string	 literal,	making	 sure	 that	 the
same	type	of	quote	begins	and	ends	that	string.

Strings	in	Python	have	below	operators.

							Slice	operator	([]	and	[:]).	By	using	the	slice	operator	([]	and	[:])	with	indexes
starting	at	0	 in	 the	beginning	of	 the	 string	and	working	 their	way	 from	-1	at	 the
end,	subsets	of	strings	can	be	taken.

							Plus	(+)	sign	operator.	By	using	the	plus	(+)	sign	operator,	we	can	concatenate
two	or	more	strings.

	 	 	 	 	 	 	Asterisk	(*)	sign	operator.	Asterisk	operator	is	the	repetition	operator.	If	we
want	to	print	string	3	times,	then	simply	we	can	give	command	as	print	(string	*
3).

All	of	above	operators	are	demonstrated	in	the	below	example.

	

Lists	in	Python

In	Python	language,	a	List	is	the	most	versatile	compound	data	types.	A	list	contains	items
which	are	separated	by	commas	and	enclosed	within	square	brackets	([]).	Lists	are	similar
to	arrays	in	C	or	C++	in	some	extents.	The	difference	between	arrays	in	C	/C++	and	lists
in	Python	is	 that	 the	former	cannot	have	different	datatype	for	elements	while	 latter	can
have	different	datatype	for	elements.

	

	

Lists	in	Python	have	below	operators.

							Slice	operator	([]	and	[:]).	By	using	the	slice	operator	([]	and	[:])	with	element
position	starting	at	0	in	the	beginning	of	the	list	and	working	their	way	from	-1	at
the	end,	subsets	of	the	list	can	be	taken.

							Plus	(+)	sign	operator.	By	using	the	plus	(+)	sign	operator,	we	can	concatenate

two	or	more	lists.

	 	 	 	 	 	 	Asterisk	(*)	sign	operator.	Asterisk	operator	is	the	repetition	operator.	If	we
want	to	print	a	list	2	times,	then	simply	we	can	give	command	as	print	(listsdemo	*
2).

	

Tuples	in	Python

In	Python	language,	a	tuple	is	a	sequence	data	type	which	is	almost	similar	to	the	list.	A
tuple	consists	of	a	number	of	values	which	are	comma	separated.	Unlike	lists,	tuples	are
enclosed	within	parentheses.

The	main	differences	between	tuples	and	lists	are	as	follows.

							Tuples	are	enclosed	in	parentheses	(())	whereas	Lists	are	enclosed	in	brackets	([
]).

	 	 	 	 	 	 	Tuples	are	read-only	lists	as	their	elements	and	size	cannot	be	changed,	while
Lists	can	be	updated.	We	can	change	lists	elements	and	size.

	

	

Tuples	in	Python	have	below	operators.

							Slice	operator	([]	and	[:]).	By	using	the	slice	operator	([]	and	[:])	with	element
position	starting	at	0	in	the	beginning	of	the	tuple	and	working	their	way	from	-1	at

the	end,	subsets	of	the	tuple	can	be	taken.

							Plus	(+)	sign	operator.	By	using	the	plus	(+)	sign	operator,	we	can	concatenate
two	or	more	tuples.

	 	 	 	 	 	 	Asterisk	(*)	sign	operator.	Asterisk	operator	is	the	repetition	operator.	If	we
want	 to	 print	 a	 tuple	 2	 times,	 then	 simply	 we	 can	 give	 command	 as	 print
(tuplesdemo	*	2).

	

Dictionary	in	Python

A	dictionary	in	Python	represents	hash	table.	A	hash	table	(or	hash	map)	is	a	data	structure
which	is	used	to	implement	an	associative	array,	a	structure	that	can	map	keys	to	values.
To	compute	an	index	of	an	array	of	buckets	or	slots,	a	hash	table	uses	a	hash	function	to
procure	the	desired	value.	This	concept	in	Python	work	like	associative	arrays	or	hashes
found	in	Perl	and	consist	of	key-value	pairs.	Keys	in	Python	dictionary	can	be	of	any	data
type,	 however	mostly	 they	 are	 either	 numbers	 or	 strings.	 On	 the	 other	 hand,	 values	 in
Python	dictionary	are	Python	objects.

	

In	 Python,	 syntax	 wise	 there	 are	 two	 ways	 dictionaries	 can	 be	 created	 which	 are
mentioned	below:

1.	 Dictionary	name	is	given	with	curly	braces	({	})	first	(E.g.	veggie	=	{}).	Next	we
can	define	the	key	value	pairs	one	by	one	as	(E.g.	veggie	[“tomatoes”]	=	20).	Here,
key	is	tomatoes	and	the	value	is	20.

2.	 Dictionary	can	also	be	defined	with	all	key	value	pairs	in	one	go	within	the	curly
braces	 ({}).	 (E.g.	 fruits	 =	 {‘apple’:	 ‘Good’,‘banana’:‘Better’,	 ‘orange’:	 ‘Best’}).
Here,	dictionary	name	is	‘fruits’,	‘apple’	is	one	of	the	key	of	such	dictionary	and
‘Good’	is	the	associated	value	with	this	key.

These	syntaxes	are	demonstrated	in	the	below	example.

	

	

Data	Type	Conversion

While	writing	 programming	 code,	we	may	 need	 to	 perform	 data	 type	 conversions.	 To
support	such	operations,	Python	language	has	several	built-in	functions	which	are	used	to
perform	 conversion	 from	 one	 data	 type	 to	 another.	 After	 conversion,	 these	 functions
return	a	new	object	representing	the	converted	value.	Below	is	the	list	of	Python	built-in
functions	along	with	their	operational	description.

	

Function Description

int(value	[,Base])
This	 function	 converts	 value	 into	 an
integer.	 “Base”	 specifies	 the	 base	 if
value	is	a	string.

long(value	[,Base])
This	function	converts	value	into	a	long
integer.	 “Base”	 specifies	 the	 base	 if
value	is	a	string.

chr(value)
This	 function	converts	an	 integer	 into	a
character.

This	 function	 is	 used	 to	 create	 a

complex(real	[,imag]) complex	number.

dict(Value)
This	 function	 is	 used	 to	 create	 a
dictionary.	 “Value”	must	 be	 a	 sequence
of	(key,	value)	tuples.

eval(strg)
This	function	is	used	to	evaluate	a	string
which	returns	an	object.

float(value)
This	 function	 converts	 value	 into	 a
floating-point	number.

frozenset(value)
This	 function	 converts	 value	 into	 a
frozen	set.

hex(value)
This	 function	 converts	 an	 integer	 value
into	a	hexadecimal	string.

list(value) This	function	converts	value	to	a	list.

repr(value)
This	 function	 is	 used	 to	 convert	 an
object	value	to	an	expression	string.

oct(value)
This	 function	 is	 used	 to	 converts	 an
integer	value	to	an	octal	string.

ord(value)
This	function	is	used	to	converts	a	single
character	to	its	integer	value.

set(value)
This	 function	 is	 used	 to	 convert	 value
into	a	set.

str(value)
This	 function	 is	 used	 to	 convert	 an
object	value	into	a	string	representation.

tuple(value)
This	 function	 is	 used	 to	 convert	 value
into	a	tuple.

unichr(value)
This	 function	 is	 used	 to	 convert	 an
integer	value	into	a	Unicode	character.

Chapter	5
Using	Operators	and	Operands
	

Operators	can	be	defined	as	the	constructs	which	can	manipulate	the	value	of	operands.

Consider	the	expression	9	-	4	=	5.	Here,	9	and	4	are	known	as	operands	and	-	is	known	as
operator.

	

Types	of	Operator

In	Python	language,	following	are	the	operators	that	are	supported.

								Arithmetic	Operators

								Assignment	Operators

								Bitwise	Operators

								Comparison	(Relational)	Operators

								Identity	Operators

								Logical	Operators

								Membership	Operators

	

	

	

Let	us	have	a	look	on	all	above	Python	operators	one	by	one.

	

Arithmetic	Operators	in	Python

Assume	variable	x	holds	30	and	variable	y	holds	30,	then	−

Operator Description Example

(+)	Addition It	 is	 a	 binary	 operator	 that
adds	 values	 on	 either	 side	 of
the	operator.

x	+	y	=	60

(-)	Subtraction It	 is	 a	 binary	 operator	 that
subtracts	 right	 hand	 operand
from	left	hand	operand.

x	–	y	=	0

(*)	Multiplication It	 is	 a	 binary	 operator	 that
multiplies	 values	 on	 either
side	of	the	operator.

x	*	y	=	900

(/)	Division It	 is	 a	 binary	 operator	 that
divides	 left	 hand	 operand	 by
right	hand	operand.

y	/	x	=	1

(%)	Modulus It	 is	 a	 binary	 operator	 that
divides	 left	 hand	 operand	 by
right	hand	operand	and	returns
remainder.

y	%	x	=	0

(**)	Exponent It	 is	 a	 binary	 operator	 that
performs	 exponential	 (power)
calculation	on	operators.

x**y	 =30	 to	 the
power	30

(//)	Floor
Division

It	is	a	floor	Division	operator.
The	 division	 of	 operands
where	the	result	is	the	quotient
and	 the	 digits	 after	 the
decimal	 point	 are	 removed.
But	 in	 the	 case	 of	 the
operands	 which	 are	 negative,
the	 result	 is	 floored	 and
rounded	 away	 from	 zero
(towards	negative	infinity).

7//2	 =	 3	 and
5.0//2.0	 =	 2.0,
-11//3	 =	 -4,
-11.0//3	=	-4.0

	

	

Assignment	Operators	in	Python

In	the	below	example,	let	us	assume	variable	x	holds	a	value	of	10	and	variable	y	holds	a
value	of	20.	Variable	z	is	the	result	operand.

	

Operator Description Example

= It	 assigns	 values	 from	 right
side	 operands	 to	 left	 side

z	 =	 x	 +	 y	 assigns
value	of	x	+	y	into

operand. z	 which	 is	 equal
to	30.

+=	Add	AND It	 adds	 the	 value	 of	 right
operand	 to	 the	 value	 of	 the
left	 operand	 and	 assign	 the
result	to	left	operand.

z	 +=	 x	 is
equivalent	 to	 z	 =
z+	x.

-=	Subtract	AND It	subtracts	the	value	of	right
operand	 from	 the	 value	 of
left	 operand	 and	 assign	 the
result	to	left	operand.

z	 -=	 x	 is
equivalent	to	z	=	z
–	x.

*=	 Multiply
AND

It	 multiplies	 the	 value	 of
right	 operand	with	 the	 value
of	left	operand	and	assign	the
result	to	left	operand.

z	 *=	 x	 is
equivalent	to	z	=	z
*	x.

/=	Divide	AND It	 divides	 the	 value	 of	 left
operand	 with	 the	 value	 of
right	 operand	 and	 assign	 the
result	to	left	operand.

z	 /=	 x	 is
equivalent	to	z	=	z
/	x.

	

%=Modulus
AND

It	 takes	 modulus	 on	 the
values	 using	 two	 operands
and	 assign	 the	 result	 to	 left
operand.

z	 %=	 x	 is
equivalent	to	z	=	z
%	x.

**=Exponent
AND

It	 performs	 exponential
(power)	 calculation	 on	 the
operators	 and	 assigns	 the
result	to	the	left	operand.

z	 **=	 x	 is
equivalent	to	z	=	z
**	x.

//=	 Floor
Division

It	 performs	 floor	 division	on
the	operators	and	assigns	 the
result	to	the	left	operand.

z	 //=	 x	 is
equivalent	 to	z=	z
//	x.

	

	

	

Bitwise	Operators	in	Python

Bitwise	operator	are	operators	that	work	on	the	bits	and	performs	bit	by	bit	operation.	For
example,	if	variable	x	=	60;	and	variable	y	=	13;	then	their	equivalent	binary	format	will
be	as	follows.

x	=	0011	1100;	y	=	0000	1101.	In	the	below	example,	binary	AND,	OR,	XOR	and	Ones
complement	operations	are	demonstrated	using	Python	bitwise	operators.

	

Python	language	supports	the	following	Bitwise	operators.

	

Operator Description Example

&	Binary	AND Binary	AND	operator	copies
a	 bit	 to	 the	 result	 if	 it	 is
present	in	both	operands.

(x	 &	 y)	 will	 give
the	 result	 as	 12.
(0000	 1100	 in
binary).

|	Binary	OR Binary	OR	operator	copies	a
bit	 if	 it	 is	 present	 in	 either
operand.

(x	 |	 y)	 will	 give
the	 result	 as	 61.
(0011	 1101	 in
binary).

^	Binary	XOR Binary	XOR	operator	 copies
the	 bit	 if	 it	 is	 set	 in	 one
operand	but	not	both.

(x	 ^	 y)	 will	 give
the	 result	 as	 49.
(0011	 0001	 in
binary).

~	 Binary	 Ones
Complement

Binary	 Ones	 Complement
operator	 is	 an	unary	 and	has
the	effect	of	‘flipping’	bits.

(~x)	 will	 give	 the
result	 as	 -61.
(1100	 0011	 in
binary).	 2’s
complement	 form
due	 to	 a	 signed
binary	number.

<<	 Binary	 Left
Shift

In	Binary	Left	Shift	operator,
the	 left	 operands	 value	 is
moved	left	by	the	number	of
bits	 specified	 by	 the	 right
operand.

x	 <<2	 will	 give
the	 result	 as	 240
(1111	 0000	 in
binary).

>>	 Binary	 Right
Shift

In	 Binary	 Right	 Shift
operator,	 the	 left	 operands

x	 >>2	 will	 give
the	 result	 as	 15

value	 is	 moved	 right	 by	 the
number	 of	 bits	 specified	 by
the	right	operand.

(0000	 1111	 in
binary).

	

Comparison	(Relational)	Operators	in	Python

Comparison	operators	in	Python	language	compare	the	values	on	either	sides	of	them	and
decide	whether	the	relation	among	them	is	true	or	false.	They	are	also	known	as	relational
operators.

In	the	below	example,	variable	x	holds	20	and	variable	y	holds	30.

	

Operator Description Example

== For	this	relational	operator,	if
the	 values	 of	 two	 operands
are	 equal,	 then	 the	 condition
becomes	true.

(x	==	y)	is	false	as
both	 have
different	values.

!= For	this	relational	operator,	if
values	 of	 two	 operands	 are
not	 equal,	 then	 condition
becomes	true.

	(x	!=	y)	is	true	as
both	 have
different	values

<> For	this	relational	operator,	if
values	 of	 two	 operands	 are
not	 equal,	 then	 condition
becomes	true.

(x	 <>	 y)	 is	 true.
This	 is	 similar	 to
(!=)	operator.

> For	this	relational	operator,	if
the	 value	 of	 left	 operand	 is
greater	than	the	value	of	right
operand,	 then	 condition
becomes	true.

(x	>	y)	 is	 false	 as
the	 value	 of	 x	 is
less	than	the	value
of	y.

< For	this	relational	operator,	if (x	 <	 y)	 is	 true	 as

the	 value	 of	 left	 operand	 is
less	 than	 the	 value	 of	 right
operand,	 then	 condition
becomes	true.

the	 value	 of	 x	 is
less	than	the	value
of	y.

>= For	this	relational	operator,	if
the	 value	 of	 left	 operand	 is
greater	 than	 or	 equal	 to	 the
value	 of	 right	 operand,	 then
condition	becomes	true.

(x	>=	y)	is	false	as
the	 value	 of	 x	 is
neither	greater	nor
equal	 to	 the	 value
of	y.

<= For	this	relational	operator,	if
the	 value	 of	 left	 operand	 is
less	than	or	equal	to	the	value
of	 right	 operand,	 then
condition	becomes	true.

(x	<=	y)	is	true	as
the	 value	 of	 x	 is
less	than	the	value
of	 y.	 Although
they	are	not	 equal
yet	 the	 result	 is
true	 as	 the	 first
condition	is	true.

	

Identity	Operators	in	Python

Python	language	has	two	identity	operators	(is	and	is	not).	Identity	operators	are	operators
that	 compare	 the	 memory	 locations	 of	 two	 objects.	 Both	 of	 the	 identity	 operators	 are
explained	below.

Operator Description Example

Is This	 identity	 operator
evaluates	 to	 true	 if	 the
variables	on	either	side	of	the
operator	 point	 to	 the	 same
object	 (memory	 location
reference).	 Otherwise	 it
evaluates	to	false.

x	 is	 y,	 in	 this
case	 the	 results	 is
1	 if	 ref(x)	 equals
ref(y).

is	not This	 identity	 operator
evaluates	 to	 false	 if	 the
variables	on	either	side	of	the
operator	 point	 to	 the	 same
object	 (memory	 location
reference).	 Otherwise	 it
evaluates	to	true.

x	 is	 not	 y,	 in	 this
case	the	result	is	1
if	 ref(x)	 is	 not
equal	to	ref(y).

	

Logical	Operators	in	Python

Python	 supports	 three	 logical	 operators	 and,	 or	 and	not.	 Following	 are	 their	 description
with	example.

Operator Description Example

and	 (Logical
AND)

If	 both	 the	 operands	 are
true	 then	 condition
becomes	true.

If	 x	 and	 y	 are	 true
then	 the	 condition
becomes	 true	 else
false.

or	(Logical	OR) If	 any	 of	 the	 two	 operands
are	non-zero	then	condition
becomes	true.

If	 x	 or	 y	 are	 true,
then	 the	 condition
becomes	 true	 else
false.

not	 (Logical
NOT)

It	 is	 used	 to	 reverse	 the
logical	state	of	its	operand.

If	x	is	true,	then	Not
(x)	will	be	false	and
vice-versa.

	

	

Membership	Operators	in	Python

In	Python	language,	the	membership	operators	test	for	membership	in	a	sequence,	such	as
lists,	tuples,	or	strings.	Both	of	the	membership	operators	are	explained	below.

Operator Description Example

In This	 membership
operator	 evaluates	 to
true	 if	 it	 finds	 that	 a
variable	 is	 the	 member
in	 the	 specified
sequence	and	otherwise
it	evaluates	to	false.

x	 in	 y,	 in	 this	 case	 the
results	 is	 1	 if	 x	 is	 a
member	of	sequence	y.

not	in This	 membership
operator	 evaluates	 to
true	if	it	does	not	find	a
variable	 is	 the	 member
in	 the	 specified
sequence	and	otherwise
it	evaluates	to	false.

x	 not	 in	 y,	 in	 this	 the
result	 is	 1	 if	 x	 is	 not	 a
member	of	sequence	y.

	

	

Operators	Precedence	in	Python

Below	table	has	a	 lists	of	all	operators	from	highest	precedence	 to	 lowest	precedence	 in
Python	language.

Operator Description

** Exponentiation	(raise	to	the	power)

~	+	- Ones	complement,	unary	plus	and	minus.

*	/	%	// Multiply,	divide,	modulo	and	floor	division.

+	- Addition	and	subtraction.

>>	<< Right	and	left	bitwise	shift.

& Bitwise	‘AND’.

^	| Bitwise	exclusive	`OR’	and	regular	`OR’.

<=	<	>	>= Comparison	operators.

<>	==	!= Equality	operators.

=	%=	/=	//=	-=
+=	*=	**=

Assignment	operators.

is,	is	not Identity	operators.

in,	not	in Membership	operators.

not,	or,	and Logical	operators.

Chapter	6
Using	Sequential	Loops
	

When	any	program	is	executed,	it	runs	sequentially.	The	statement	which	appears	first	in
the	sequence	is	executed	first	 then	the	next	statement	and	so	on	till	 the	last	statement	of
the	program.	Many	times	there	is	a	requirement	to	run	same	block	of	code	in	a	program
multiple	times	then	there	arise	a	need	of	a	control	structure	known	as	loops.

A	loop	makes	a	statement	or	group	of	statements	 in	a	block	of	code	to	execute	multiple
times	 if	 the	condition	 is	 true	and	exits	 the	 loop	when	the	condition	becomes	false.	Such
loop	is	illustrated	in	the	below	diagram.

	

	

	 																																																																		

	

	

																							If	false																																						

	

	

	

Types	of	Loop	in	Python

In	Python	programming	language,	following	are	the	types	of	loops	used	to	handle	looping
requirements.

Loop	Type Description

while	loop

While	 loop	 type,	 repeats	 a	 statement	 or	 group	 of
statements	while	 a	 given	 condition	 is	 true.	 It	 tests
the	 condition	 each	 time	 it	 executes	 the	 loop	 body
and	it	exits	the	loop	when	condition	becomes	false.

for	loop

For	 loop	 type	 executes	 a	 sequence	 of	 statements
multiple	 times	 and	 abbreviates	 the	 code	 that
manages	the	loop	variable.

nested	loops

It	 is	 a	 loop	within	a	 loop.	 In	Python	we	can	use	a
while	loop	in	another	while	or	for	 loop	or	for	 loop
in	another	while	or	for	loop.

	

Loop	Control	Statements	in	Python

Loop	control	statements	in	Python	are	used	to	change	execution	from	its	normal	sequence.
When	such	execution	leaves	a	scope,	all	automatic	objects	that	were	created	in	that	scope
are	destroyed	or	removed.

In	Python	language,	the	following	control	statements	are	supported.

	

Control	Statement Description

break	statement

The	 break	 statement	 in	 Python	 is	 used	 to
terminate	 the	 loop	 statement	 and	 transfers
execution	 to	 the	 statement	 immediately
following	after	the	end	of	loop.

The	 continue	 statement	 in	 Python	 is	 used	 to
cause	the	loop	to	skip	the	remainder	of	its	body

continue	statement
and	 immediately	 retest	 its	 condition	 prior	 to
reiterating	the	looping	body.

pass	statement

The	 pass	 statement	 in	 Python	 is	 used	when	 a
statement	 is	 required	 syntactically	 but	 we	 do
not	want	any	command	or	code	 to	execute	on
that	statement.

	

Loop	and	Control	Statement	Python	Code	Example

While	Statement

	

The	syntax	of	a	while	loop	in	Python	programming	language	is	as	follows.

while	expression:

statement(s)

	

Example	code	for	while	loop	in	Python.

	

For	Statement

The	syntax	of	a	‘for’	loop	in	Python	programming	language	is	as	follows.

for	iterating_var	in	sequence:

		statements	(s)

	

Example	code	for	‘for’	loop	in	Python.

	

Nested	Loop

As	explained	earlier,	it	is	a	loop	within	a	loop.	Below	is	the	syntax	for	nested	for	loop	in
Python.

	

for	iterating_var	in	sequence:

for	iterating_var	in	sequence:

statements(s)

statements(s)

Below	is	the	syntax	for	nested	while	loop	in	Python.

	

	

while	expression:

while	expression:

statement(s)

statement(s)

	

	

Below	is	an	example	for	‘while	nested	loop	in	Python	along	with	its	output.

	

Example	on	control	statements	in	Python

	

Chapter	7
Decision	Making	and	Expressions
	

While	writing	a	program,	most	of	the	time	we	face	a	situation	where	we	have	to	make	a
decision.	Decision	making	is	anticipation	of	conditions	that	could	occur	while	execution
of	a	program	and	there	is	a	need	to	specify	some	actions	according	to	those	conditions.

In	a	decision	making	structures,	there	is	a	condition	which	is	either	a	single	expression	or
multiple	expressions.	This	condition	when	evaluated	produce	either	TRUE	or	FALSE	as
outcome.	Based	on	 the	outcome,	we	need	 to	 determine	which	 action	 to	 take	 and	which
statements	to	execute.	Refer	the	figure	below	to	understand	it	clearly.

	

																																																																										FALSE

	

																																																	TRUE

	

	

	

Above	 is	 the	 general	 form	 of	 a	 decision	making	 structure	 that	 is	 found	 in	most	 of	 the
programming	languages	including	Python.

In	 Python	 programming	 language,	 it	 should	 be	 noted	 that	 any	 non-zero	 and	 non-null

if	expression:

statement	(s)

else:

values	are	assumed	as	TRUE,	however	if	it	is	either	zero	or	null,	in	that	case	it	is	assumed
as	FALSE	value.

Following	are	the	types	of	decision	making	statements	in	Python	language.

	

Statement Description

if	statements

An	 ‘if’	 statement	 consists	 of	 a	 boolean	 expression
which	 generally	 follows	 either	 one	 or	 more
statements.

if…else
statements

An	 ‘if’	 statement	 can	 be	 followed	 by	 an
optional	 else	 statement.	 When	 the	 boolean
expression	 is	 TRUE	 then	 the	 statements	 in	 ‘if’
block	 are	 executed	 and	 if	 it	 is	 FALSE	 then	 the
statements	in	‘else’	block	are	executed	skipping	the
statements	present	in	‘if’	block.

Nested	if…
elif…else
statements

Nested	 ‘if’	 statements	 are	 ‘if…elif…else’
statements	within	other	‘if’	statement.

	

Syntax	for	if	and	if…else	statement.

Below	is	the	syntax	for	if	statement	alone	in	Python	language.

if	expression:

statement(s)

	

Below	is	the	syntax	for	if…else	statement	alone	in	Python	language.

	

	

	

http://www.tutorialspoint.com/python/python_if_statement.htm
http://www.tutorialspoint.com/python/python_if_else.htm
http://www.tutorialspoint.com/python/nested_if_statements_in_python.htm

statement	(s) 	

	

Python	code	example	on	if…else	statement

	

Python	Code	example	to	demonstrate	Nested	if-elif-else	statement.

Below	is	the	syntax	of	the	nested	if…elif…else	construct	may	be:

if	expression1:

statement(s)

if	expression2:

statement(s)

elif	expression3:

statement(s)

else

statement(s)

elif	expression4:

statement(s)

else:

statement(s)

	

Chapter	8
Strings	and	Functions	in	Python
	

In	 the	 previous	 chapters,	 we	 have	 already	 discussed	 about	 how	 to	 declare	 string	 and
numbers	in	Python.	In	this	chapter,	we	are	going	to	discuss	about	various	Python	in-built
mathematical,	random	number,	trigonometric	functions	and	their	use	on	numbers	and	in-
built	string	methods.

	

Mathematical	functions

	

Function Returns	(description)

abs(x) This	 function	 determines	 the	 absolute	 value	 of	 x,
which	is	the	(positive)	distance	between	x	and	zero.

ceil(x) This	function	determines	 the	ceiling	of	x,	which	is
the	smallest	integer	not	less	than	x.

cmp(x,	y) This	 function	 returns	 values	 as	 -1,	 0	 and	 1.	 It
returns-1	if	x	<	y,	0	if	x	==	y,	or	1	if	x	>	y.

exp(x) This	function	determines	the	exponential	of	x:	ex.

fabs(x) This	function	determines	the	absolute	value	of	x.

floor(x) This	function	determines	the	floor	of	x,	which	is	the
largest	integer	not	greater	than	x.

log(x) This	function	determines	the	natural	logarithm	of	x,
for	x>	0.

log10(x) This	function	determines	the	base-10	logarithm	of	x

for	x>	0.

max	(x1,	x2,..) This	 function	 determines	 the	 largest	 of	 its
arguments,	 which	 is	 the	 value	 closest	 to	 positive
infinity.

min	(x1,	x2,..) This	 function	 determines	 the	 smallest	 of	 its
arguments,	 which	 is	 the	 value	 closest	 to	 negative
infinity

modf(x) This	 function	determines	 the	fractional	and	 integer
parts	of	x	 in	a	 two-item	 tuple.	Both	parts	have	 the
same	 sign	 as	 x.	 The	 integer	 part	 is	 returned	 as	 a
float	by	the	function.

pow(x,	y) This	function	determines	the	value	of	x**y.

round(x	[,n]) In	 this	 function,	 x	 rounded	 to	 n	 digits	 from	 the
decimal	point.	Python	rounds	away	from	zero	as	a
tie-breaker,	 round	 (0.5)	 is	 1.0	 and	 round	 (-0.5)	 is
-1.0.

sqrt(x) This	function	determines	the	square	root	of	x	for	x
>	0.

	

	

Random	Number	functions

	

Function Description

choice(seq) This	 function	 returns	a	 random	 item	 from	a	 list,
tuple,	or	string.

randrange	([start,]
stop	[,step])

This	 function	 returns	 a	 randomly	 selected
element	from	range	(start,	stop,	step).

random() This	function	returns	a	random	float	r,	such	that	0
is	less	than	or	equal	to	r	and	r	is	less	than	1.

seed([x]) This	function	sets	the	integer	starting	value	used
in	generating	random	numbers.	Call	this	function
before	calling	any	other	random	module	function.
Returns	None.

shuffle(lst) This	function	is	used	to	randomize	the	items	of	a
list	in	place.	It	returns	Nothing.

uniform(x,	y) This	function	returns	a	random	float	r,	such	that	x
is	less	than	or	equal	to	r	and	r	is	less	than	y.

	

	

Trigonometric	functions

	

Function Description

acos(x) This	Python	in-built	trigonometric	function	returns
the	arc	cosine	of	x,	in	radians.

asin(x) This	Python	in-built	trigonometric	function	returns
the	arc	sine	of	x,	in	radians.

atan(x) This	Python	in-built	trigonometric	function	returns
the	arc	tangent	of	x,	in	radians.

atan2(y,	x) This	Python	in-built	trigonometric	function	returns
atan(y	/	x),	in	radians.

cos(x) This	Python	in-built	trigonometric	function	returns
the	cosine	of	x	radians.

hypot(x,	y) This	Python	in-built	trigonometric	function	returns
the	Euclidean	norm,	sqrt(x*x	+	y*y).

sin(x) This	Python	in-built	trigonometric	function	returns
the	sine	of	x	radians.

tan(x) This	Python	in-built	trigonometric	function	returns
the	tangent	of	x	radians.

degrees(x) This	 Python	 in-built	 trigonometric	 function
converts	angle	x	from	radians	to	degrees.

radians(x) This	 Python	 in-built	 trigonometric	 function
converts	angle	x	from	degrees	to	radians.

	

	

Mathematical	Constants

	

Constants Description

Pi The	mathematical	constant	pi.

E The	mathematical	constant	e.

	

Python	in-built	String	Methods

	

Methods Description

capitalize() This	Python	 in-built	 function	 is	 for	String
which	 makes	 first	 letter	 of	 the	 string	 in
uppercase

center(width,	fillchar) This	 Python	 in-built	 function	 for	 String
returns	 a	 space-padded	 string	 with	 the
original	string	centered	to	a	 total	of	width
columns.

count(str,	beg=
0,end=len(string))

This	 Python	 in-built	 function	 for	 String
counts	how	many	times	str	occurs	in	string
or	in	a	substring	of	string	if	starting	index
beg	and	ending	index	end	are	given.

decode(encoding=‘UTF-
8’,errors=‘strict’)

This	 Python	 in-built	 function	 for	 String
decodes	 the	 string	 using	 the	 codec
registered	for	encoding.	Encoding	defaults
to	the	default	string	encoding.

encode(encoding=‘UTF-
8’,errors=‘strict’)

This	 Python	 in-built	 function	 for	 String
returns	encoded	string	version	of	string;	on
error,	 default	 is	 to	 raise	 a	 ValueError
unless	 errors	 is	 given	 with	 ‘ignore’	 or
‘replace’.

endswith(suffix,	beg=0,
end=len(string))

This	 Python	 in-built	 function	 for	 String
determines	if	string	or	a	substring	of	string
(if	starting	index	beg	and	ending	index	end
are	given)	ends	with	suffix;	returns	true	if
so	and	false	otherwise.

expandtabs(tabsize=8) This	 Python	 in-built	 function	 for	 String
expands	 tabs	 in	 string	 to	multiple	 spaces;
defaults	 to	 8	 spaces	 per	 tab	 if	 tabsize	 not
provided.

find(str,	beg=0
end=len(string))

This	 Python	 in-built	 function	 for	 String
determine	 if	 str	 occurs	 in	 string	 or	 in	 a
substring	of	string	if	starting	index	beg	and
ending	index	end	are	given	returns	index	if
found	and	-1	otherwise.

index(str,	beg=0,
end=len(string))

This	Python	 in-built	 function	for	String	 is
same	 as	 find(),	 but	 raises	 an	 exception	 if
str	not	found.

isalnum() This	 Python	 in-built	 function	 for	 String
returns	true	if	string	has	at	least	1	character
and	 all	 characters	 are	 alphanumeric	 and
false	otherwise.

isalpha() This	 Python	 in-built	 function	 for	 String
returns	true	if	string	has	at	least	1	character
and	all	characters	are	alphabetic	and	false
otherwise.

isdigit() This	 Python	 in-built	 function	 for	 String
returns	 true	 if	 string	 contains	 only	 digits
and	false	otherwise.

islower() This	 Python	 in-built	 function	 for	 String
returns	 true	 if	 string	 has	 at	 least	 1	 cased
character	 and	 all	 cased	 characters	 are	 in
lowercase	and	false	otherwise.

isnumeric() This	 Python	 in-built	 function	 for	 String
returns	 true	 if	 a	 Unicode	 string	 contains
only	 numeric	 characters	 and	 false

otherwise.

isspace() This	 Python	 in-built	 function	 for	 String
returns	 true	 if	 string	 contains	 only
whitespace	characters	and	false	otherwise.

istitle() This	 Python	 in-built	 function	 for	 String
returns	 true	 if	 string	 is	 properly
“titlecased”	and	false	otherwise.

isupper() This	 Python	 in-built	 function	 for	 String
returns	true	if	string	has	at	least	one	cased
character	 and	 all	 cased	 characters	 are	 in
uppercase	and	false	otherwise.

join(seq) This	 Python	 in-built	 function	 for	 String
merges	 (concatenates)	 the	 string
representations	 of	 elements	 in	 sequence
seq	into	a	string,	with	separator	string.

len(string) This	 Python	 in-built	 function	 for	 String
returns	the	length	of	the	string

ljust(width[,	fillchar]) This	 Python	 in-built	 function	 for	 String
returns	 a	 space-padded	 string	 with	 the
original	 string	 left-justified	 to	 a	 total	 of
width	columns.

lower() This	 Python	 in-built	 function	 for	 String
converts	 all	 uppercase	 letters	 in	 string	 to
lowercase.

lstrip() This	 Python	 in-built	 function	 for	 String
removes	all	leading	whitespace	in	string.

maketrans() This	 Python	 in-built	 function	 for	 String
returns	 a	 translation	 table	 to	 be	 used	 in

translate	function.

max(str) This	 Python	 in-built	 function	 for	 String
returns	 the	 max	 alphabetical	 character
from	the	string	str.

min(str) This	 Python	 in-built	 function	 for	 String
returns	the	min	alphabetical	character	from
the	string	str.

replace(old,	new	[,
max])

This	 Python	 in-built	 function	 for	 String
replaces	 all	 occurrences	 of	 old	 in	 string
with	 new	 or	 at	 most	 max	 occurrences	 if
max	given.

rfind(str,
beg=0,end=len(string))

This	Python	 in-built	 function	for	String	 is
same	 as	 find	 (),	 but	 search	 backwards	 in
string.

rindex(str,	beg=0,
end=len(string))

This	Python	 in-built	 function	for	String	 is
same	as	index	(),	but	search	backwards	in
string.

rjust(width,[,	fillchar]) This	 Python	 in-built	 function	 for	 String
returns	 a	 space-padded	 string	 with	 the
original	 string	 right-justified	 to	 a	 total	 of
width	columns.

rstrip() This	 Python	 in-built	 function	 for	 String
removes	all	trailing	whitespace	of	string.

split(str=””,
num=string.count(str))

This	 Python	 in-built	 function	 for	 String
splits	 string	 according	 to	 delimiter	 str
(space	 if	 not	 provided)	 and	 returns	 list	 of
substrings;	 split	 into	 at	 most	 num
substrings	if	given.

splitlines(
num=string.count(‘\n’))

This	 Python	 in-built	 function	 for	 String
splits	 string	 at	 all	 (or	 num)	 NEWLINEs
and	 returns	 a	 list	 of	 each	 line	 with
NEWLINEs	removed.

startswith(str,
beg=0,end=len(string))

This	 Python	 in-built	 function	 for	 String
determines	if	string	or	a	substring	of	string
(if	starting	index	beg	and	ending	index	end
are	given)	starts	with	substring	str;	returns
true	if	so	and	false	otherwise.

strip([chars]) This	 Python	 in-built	 function	 for	 String
performs	both	lstrip()	and	rstrip()	on	string

swapcase() This	 Python	 in-built	 function	 for	 String
inverts	case	for	all	letters	in	string.

title() This	 Python	 in-built	 function	 for	 String
returns	 “titlecased”	 version	 of	 string,	 that
is,	all	words	begin	with	uppercase	and	the
rest	are	lowercase.

translate(table,
deletechars=””)

This	 Python	 in-built	 function	 for	 String
translates	 string	 according	 to	 translation
table	str(256	chars),	removing	those	in	the
del	string.

upper() This	 Python	 in-built	 function	 for	 String
converts	 lowercase	 letters	 in	 string	 to
uppercase.

zfill	(width) This	 Python	 in-built	 function	 for	 String
returns	 original	 string	 leftpadded	 with
zeros	 to	 a	 total	 of	 width	 characters;
intended	 for	 numbers,	 zfill	 ()	 retains	 any
sign	given	(less	one	zero).

isdecimal() This	 Python	 in-built	 function	 for	 String
returns	 true	 if	 a	 Unicode	 string	 contains
only	 decimal	 characters	 and	 false
otherwise.

	

	

String	Formatting	Operator

	

Python	language	has	the	string	format	operator	%	which	is	unique	to	strings	and	makes	up
for	the	functions	present	for	C	language	printf	().	Following	is	the	list	of	such	operators	in
Python.

	

Format	Symbol Conversion

%c It	converts	to	character

%s string	conversion	via	str()	prior	to	formatting

%i It	converts	to	signed	decimal	integer

%d It	converts	to	signed	decimal	integer

%u It	converts	to	unsigned	decimal	integer

%o It	converts	to	octal	integer

%x It	converts	to	hexadecimal	integer	(lowercase
letters)

%X It	converts	to	hexadecimal	integer	(upper	case
letters)

%e It	converts	to	exponential	notation	(with

lowercase	‘e’)

%E It	converts	to	exponential	notation	(with	upper
case	‘E’)

%f It	converts	to	floating	point	real	number

%g It	converts	to	the	shorter	of	%f	and	%e

%G It	converts	to	the	shorter	of	%f	and	%E

Python	code	example	for	String	Formatter

	

In	 the	 above	 example	%s	 string	 formatter	 is	 used	 to	 format	 a	 string	 and	%d	 is	 used	 to
format	an	integer	into	a	string.

	

Escape	Characters

Python	 language	 has	 the	 following	 list	 of	 escape	 or	 non-printable	 characters	 that	 are
represented	with	backslash	notation.

An	escape	character	gets	interpreted	by	Python	in	a	single	quoted	as	well	as	double	quoted
strings.

Backslash
Notation

Hexadecimal
Character

Description

\a 0x07 It	is	used	for	Bell	or	alert.

\b 0x08 It	is	used	for	Backspace.

\cx 	 It	is	used	for	Control-x.

\C-x 	 It	is	used	for	Control-x.

\e 0x1b It	is	used	for	Escape.

\f 0x0c It	is	used	for	Formfeed.

\M-\C-x 	 It	is	used	for	Meta-Control-x.

\n 0x0a It	is	used	for	Newline.

\nnn 	 It	is	used	for	Octal	notation,	where	n
is	in	the	range	0.7.

\r 0x0d It	is	used	for	carriage	return.

\s 0x20 It	is	used	for	space.

\t 0x09 It	is	used	for	tab.

\v 0x0b It	is	used	for	vertical	tab.

\x 	 It	is	used	for	character	x.

\xnn 	 It	is	used	for	hexadecimal	notation,
where	n	is	in	the	range	0.9,	a.f,	or	A.F

Chapter	9
Creating,	Using,	and	Modifying	Lists
	

	

In	chapter	4,	we	have	already	discussed	about	Lists	as	Python	data	type.	In	this	chapter	we
are	going	to	discuss	basic	lists	operations	and	Python	in-built	methods	and	functions	for
Lists.

	

Creating	a	list

A	 list	 in	 Python	 can	 be	 declared	 by	 putting	 different	 comma-separated	 values	 between
square	brackets.

e.g.	 days	 =	 [‘Sunday’,	 ‘Monday’,	 ‘Tuesday’,	 ‘Wednesday’,	 ‘Thursday’,	 ‘Friday’,
‘Saturday’];	number	=	[1,	2,	3,	4,	5,6,7,8,9,0];	chars	=	[“a”,	“b”,	“c”,	“d”,	“e”];

	

Accessing	elements	from	list

Elements	from	the	list	can	be	accessed	by	using	the	square	brackets	for	slicing	along	with
the	index	to	procure	value	available	at	that	index	of	the	list.

E.g.	days	[1];	number	[1:6];

	

Updating	and	Adding	elements	in	lists

We	can	update	a	single	element	or	multiple	elements	of	a	 list	by	giving	 the	slice	on	 the
left-hand	side	of	the	assignment	operator.

E.g.	days	[2]	=	‘January’;

We	can	add	elements	in	the	list	by	using	the	append	()	method

	

Deleting	an	element	from	list

In	Python,	we	can	remove	a	list	element	by	using	the	del	statement	if	index	is	known	of

the	element	to	be	deleted.

E.g.	del	days	[3];

Alternatively,	we	can	use	the	remove	()	method	to	remove	an	element	from	a	list.

All	of	 these	list	operations	are	demonstrated	in	the	below	example.	First,	we	created	the

list.	Next,	we	accessed	the	elements	from	the	list.	Then,	we	updated	3rd	element	in	the	list
using	 the	assignment	operator.	Lastly,	we	used	 the	del	statement	 to	delete	an	element	 in
the	list,	doing	so	days	[2]	has	printed	Wednesday	as	element	which	was	present	at	days	[2]
index	was	deleted.

	

	

Basic	lists	operations

Like	 Python	 strings,	 we	 can	 use	 +	 and	 *	 operators	 on	 lists	 for	 operations	 like
concatenation	and	repetition	respectively.	Below	are	the	list	operations	on	Python	lists.

	

Python	Expression Results Description

len([1,	2,	3,	4,	5]) 5 Length	operation.

[1,	2,	3,	4,	5]	+	[6,
7,	8,	9,	0]

[1,	2,	3,	4,	5,	6,	7,	8,
9,	0]

Concatenation	operation.

[‘Hello’]	*	3 [‘Hello’,	‘Hello’,
‘Hello’]

Repetition	operation.

4	in	[1,	2,	3,	4,	5] TRUE Membership	operation.

for	a	in	[1,	2,	3,	4,
5]:	print	a,

1	2	3	4	5 Iteration	operation.

	

Indexing,	Slicing,	and	Matrixes	in	Lists

Python	lists	are	nothing	both	sequences,	therefore	indexing	and	slicing	work	the	same	way
for	lists	as	they	do	for	strings.	Therefore,	below	operations	are	possible.

In	the	above	example,	if	index	is	negative	then	counting	will	start	from	the	right	side	and
if	 it	 starts	with	 0	 then	 counting	will	 be	 from	 left	 side.	Like	Python	String,	 Python	 lists
supports	slicing	and	will	print	the	sections	of	the	lists	as	per	their	indexes.

	

Built-in	Lists	Methods	&	Functions

Below	are	Python	built-in	functions	for	List	operations.

Function Description

cmp(list1,	list2) This	 Python	 built-in	 function	 for	 lists	 compares
elements	of	both	lists.

len(list) This	Python	built-in	function	for	lists	gives	the	total
length	of	the	list.

max(list) This	Python	built-in	 function	 for	 lists	 returns	 item
from	the	list	with	max	value.

min(list) This	Python	built-in	 function	 for	 lists	 returns	 item
from	the	list	with	min	value.

list(seq) This	 Python	 built-in	 function	 for	 lists	 converts	 a
tuple	into	list.

Chapter	10
Tuples	and	Data	Types
	

	

In	the	chapter	4,	we	have	already	mentioned	Tuples	as	Python	data	type	and	some	details
about	it.	In	this	chapter,	we	are	going	to	discuss	about	basic	tuples	operations	and	Python
in-built	methods	and	functions	for	Tuples.

	

Creating	a	Tuple

A	tuple	is	a	sequence	of	immutable	Python	objects.	A	tuple	in	Python	can	be	declared	by
putting	different	comma-separated	values	between	parentheses.

e.g.	 days	 =	 (‘Sunday’,	 ‘Monday’,	 ‘Tuesday’,	 ‘Wednesday’,	 ‘Thursday’,	 ‘Friday’,
‘Saturday’);	number	=	(1,	2,	3,	4,	5,6,7,8,9,0);	chars	=	(“a”,	“b”,	“c”,	“d”,	“e”);

	

Accessing	elements	from	Tuples

Elements	 from	 the	 tuple	 can	be	 accessed	by	using	 the	 square	brackets	 for	 slicing	 along
with	the	index	to	procure	value	available	at	that	index	of	the	tuple.

E.g.	days	[1];	number	[1:6];

	

Updating	and	Adding	elements	in	Tuples

We	cannot	modify	any	element	of	a	tuple	as	tuples	are	immutable	which	means	we	cannot
update	or	change	the	values	or	size	of	tuple	elements.

	

Deleting	an	element	from	Tuples

It	 is	 not	 possible	 to	 remove	 an	 individual	 tuple	 element	 from	 a	 tuple	 as	 tuples	 are
immutable.	However,	we	can	remove	an	entire	tuple	by	just	using	the	‘del’	statement.

All	of	these	tuples	operations	are	demonstrated	in	the	below	example.	First,	we	created	the

tuples.	Next,	we	accessed	the	elements	from	the	tuples.	We	cannot	update	the	value	of	any
element	 in	 Tuple.	 Lastly,	 we	 used	 the	 ‘del’	 statement	 to	 delete	 the	 entire	 tuple,	 when
attempted	to	print	the	deleted	tuple	it	throws	an	error	as	it	no	longer	exists	in	memory.

	

	

	

	

Basic	Tuples	operations

Like	 Python	 strings,	 we	 can	 use	 +	 and	 *	 operators	 on	 tuples	 for	 operations	 like
concatenation	 and	 repetition	 respectively.	 Below	 are	 the	 tuples	 operations	 on	 Python
tuples.

Python	Expression Results Description

len((1,	2,	3,	4,	5)) 5 Length	operation.

(1,	2,	3,	4,	5)+	(6,	7,
8,	9,	0)

(1,	2,	3,	4,	5,	6,	7,	8,
9,	0)

Concatenation	operation.

(‘Hello’)	*	3 (‘Hello’,	‘Hello’,
‘Hello’)

Repetition	operation.

4	in	(1,	2,	3,	4,	5) TRUE Membership	operation.

for	a	in	(1,	2,	3,	4,
5):	print	a,

1	2	3	4	5 Iteration	operation.

	

Indexing,	Slicing,	and	Matrixes	in	Tuples

Python	 tuples	 are	 nothing	 but	 sequences,	 therefore	 indexing	 and	 slicing	work	 the	 same
way	for	tuples	as	they	do	for	strings.	Therefore,	below	operations	are	possible.

In	 the	 above	 example,	 if	 index	 is	 negative	 then	 counting	will	 start	 from	 right	 side.	 If	 it
starts	 with	 0	 then	 counting	 will	 be	 from	 left	 side.	 Like	 Python	 String,	 Python	 tuples
supports	slicing	and	will	print	the	sections	of	the	tuples	as	per	their	indexes.

	

Built-in	Tuples	Methods	&	Functions

Below	are	Python	built-in	functions	for	Tuples	operations.

Function Description

cmp(tuple1,
tuple2)

This	 Python	 built-in	 function	 for	 tuples
compares	elements	of	both	tuples.

len(tuple) This	Python	built-in	function	for	tuples	gives	the
total	length	of	the	tuple.

max(tuple) This	 Python	 built-in	 function	 for	 tuples	 returns
item	from	the	tuple	with	max	value.

min(tuple) This	 Python	 built-in	 function	 for	 tuples	 returns
item	from	the	tuple	with	min	value.

tuple(seq) This	Python	built-in	function	for	tuples	converts
a	list	into	tuple.

Chapter	11
Dictionary	Operations	and	Functions

	

In	the	chapter	4,	we	saw	basics	of	Dictionary	as	Python	data	type.	In	this	chapter,	we	are
going	to	discuss	about	dictionary	operations	and	Python	in-built	methods	and	functions	for
dictionary.

	

Creating	a	Dictionary

A	Python	dictionary	can	be	created	by	placing	key	value	pairs	separated	by	comma	within
the	curly	braces	as	shown	in	the	below	example.

E.g.	biodata	=	{‘Name’:	‘Julie’,	‘Age’:	25,	‘Height’:	‘180cm’,	‘Profession’:	‘Banker’};

	

Accessing	elements	from	Dictionary

Element	values	from	dictionary	can	be	procured	by	using	square	brackets	along	with	the
key	in	it	as	shown	in	the	below	example.

E.g.	biodata	[‘Profession’];	biodata	[‘Age’];

	

Updating	and	Adding	elements	in	Dictionary

In	Python	language,	a	new	entry	of	key	value	pair	can	be	done	by	adding	a	new	key	value
pair	with	the	name	of	the	dictionary	as	shown	in	the	below	example.

E.g.	biodata	[‘Company’]	=	“XYZ	Ltd.”;

An	 existing	 value	 in	 dictionary	 can	 be	 updated	 by	 using	 the	 assignment	 operator	 and
assign	a	new	value	to	the	key	element	in	the	dictionary	as	shown	in	the	below	example.

E.g.	biodata	[‘Age’]	=	22;

	

Deleting	an	element	from	Dictionary

In	 Python	 language,	 a	 complete	 key-value	 pair	 element	 can	 be	 deleted	 by	 using	 ‘del’
statement	before	square	brackets	along	with	the	key	in	it	which	is	to	be	deleted	as	shown
in	the	below	example.

E.g.	del	biodata	[‘Company’];

Also,	if	we	want	to	delete	the	entire	dictionary,	it	can	be	done	by	using	the	‘del’	statement
before	dictionary	variable	as	shown	in	the	below	example.

E.g.	del	biodata;

In	 the	 below	 Python	 code	 example,	 firstly,	 we	 have	 created	 dictionaries	 (biodata	 and
month).	 Secondly,	 we	 are	 accessing	 element	 values	 from	 dictionary.	 Thirdly,	 we	 are
adding	key	value	pair	 in	dictionary	and	 then	updating	 the	value	of	one	of	 the	key-value
pair	in	dictionary.	Lastly,	we	have	deleted	an	entire	key	value	pair	from	dictionary	based
on	its	key	and	the	complete	dictionary	using	‘del’	statement.

	

	

Properties	of	Dictionary	Keys

	 	 	 	 	 	 	Key	cannot	be	duplicated.	Therefore,	only	one	entry	per	key	 is	permitted	 in
Python	 dictionary.	 If	 python	 interpreter	 encounters	 duplicate	 keys	 during
assignment,	 the	 last	 assignment	 wins	 i.e.	 will	 be	 considered	 or	 overwrite	 the
previous	one.

	 	 	 	 	 	 	Keys	 in	 dictionary	 are	 immutable.	 It	means	we	 can	use	numbers,	 strings	or
tuples	 as	 dictionary	 keys	 but	 anything	 like	 [‘key’]	 is	 not	 allowed	 in	 Python
dictionary	data	type.

	

Built-in	Dictionary	Functions	&	Methods

Below	are	Python	built-in	function	for	dictionary.

	

Function Description

cmp(dict1,	dict2) This	 Python	 built-in	 function	 for	 dictionary
compares	elements	of	both	dict.

len(dict) This	Python	built-in	 function	for	dictionary	gives
the	 total	 length	 of	 the	 dictionary.	 This	 would	 be
equal	to	the	number	of	items	in	the	dictionary.

str(dict) This	 Python	 built-in	 function	 for	 dictionary
produces	 a	 printable	 string	 representation	 of	 a
dictionary

type(variable) This	 Python	 built-in	 function	 for	 dictionary
returns	 the	 type	 of	 the	 passed	 variable.	 If	 passed
variable	 is	 dictionary,	 then	 it	 would	 return	 a
dictionary	type.

Below	are	Python	built-in	methods	for	dictionary.

	

Methods Description

dict.clear() This	 Python	 built-in	 method	 for	 dictionary
removes	all	elements	of	dictionary	dict

dict.copy() This	 Python	 built-in	 method	 for	 dictionary
returns	a	shallow	copy	of	dictionary	dict

dict.fromkeys() This	 Python	 built-in	 method	 for	 dictionary
create	a	new	dictionary	with	keys	from	seq	and
values	set	to	value.

dict.get(key,
default=None)

For	key	‘key’,	returns	value	or	default	if	key	not
in	dictionary

dict.has_key(key) This	 Python	 built-in	 method	 for	 dictionary
returns	 true	 if	 key	 in
dictionary	dict,	false	otherwise

dict.items() This	 Python	 built-in	 method	 for	 dictionary
returns	a	list	of	dict’s	(key,	value)	tuple	pairs

dict.keys() This	 Python	 built-in	 method	 for	 dictionary
returns	list	of	dictionary	dict’s	keys

dict.setdefault(key,
default=None)

This	 Python	 built-in	 method	 for	 dictionary	 is
similar	 to	 get(),	 but	 will	 set	 dict[key]=default
if	key	is	not	already	in	dict

dict.update(dict2) This	Python	built-in	method	for	dictionary	adds
dictionary	dict2’s	key-values	pairs	to	dict

dict.values() This	 Python	 built-in	 method	 for	 dictionary
returns	list	of	dictionary	dict’s	values

Chapter	12
Mastering	Date	and	Time

	

In	Python	programming	language,	date	and	time	can	be	handled	in	the	following	ways.

	

Tick

Tick	in	Python	is	 the	 instance	if	 time	measured	in	seconds	since	January	1,	1970	12:00.
Python	has	time	module	which	has	functions	to	work	with	time.	The	function	time.time	()
returns	the	current	system	time	in	ticks	since	12:00am,	January	1,	1970(epoch)	as	shown
in	the	below	example.

	

TimeTuple

In	Python	language,	many	time	functions	handle	time	as	a	tuple	of	9	numbers	as	indicated
in	the	below	table.	This	tuple	is	equivalent	to	struct_time	structure	shown	in	the	attribute
column.

Index Field Values Attributes

0 4-digit	year 2008 tm_year

1 Month 1	to	12 tm_mon

2 Day 1	to	31 tm_mday

3 Hour 0	to	23 tm_hour

4 Minute 0	to	59 tm_min

5 Second 0	to	61	(60	or	61	are	leap-
seconds)

tm_sec

6 Day	of	Week 0	to	6	(0	is	Monday) tm_wday

7 Day	of	year 1	to	366	(Julian	day) tm_yday

8 Daylight
savings

(-1,	0,	1,	-1)	means	library
determines	DST

tm_isdst

	

Python	code	example	for	TimeTuple

Getting	current	local	time:	To	get	the	current	local	time	in	TimeTuple	format	use
the	 function	 as	 time.localtime(time.time()),	 this	 function	 will	 translate	 the	 tick
seconds	into	struct_time	structure	as	a	tuple	of	9	numbers	as	discussed	above.

	

	

Formatting	current	 local	 time:	To	get	 the	current	 local	 readable	 format	use	 the
function	as	time.asctime	()	as	shown	in	the	below	example.

	

	

Print	calendar	for	a	month:	Python	has	a	calendar	module	which	gives	a	wide
range	 of	 methods	 to	 work	 with	 monthly	 and	 yearly	 calendars.	 In	 the	 below
example,	we	are	going	to	print	a	calendar	for	a	Feb	2016	month	(leap	year)	using
the	function	calendar.month	(year,	month).

	

Summary	of	functions	in	Time	Module

Below	are	the	functions	available	in	Calendar	module.

Time	Functions Description

time.altzone																																

This	is	to	be	used	only	when
Only	 use	 this	 if	 daylight	 is
nonzero.	 It	 is	 positive	 if	 the
offset	 of	 the	 local	DST	 time
zone	is	west	of	UTC.

This	 is	 negative	 if	 the	 local
DST	 time	 zone	 is	 east	 of
UTC	 (as	 in	Western	Europe,
including	 the	 UK).	 All	 in
seconds.

This	function	of	time	module

time.asctime([tupletime])																			

accepts	 a	 time-tuple	 and
returns	 a	 readable	 24-
character	string	such	as	‘Tue
Apr	26	19:09:19	2016’.

time.clock()																															

This	function	of	time	module
returns	the	current	CPU	time
as	a	floating-point	number	of
seconds.

time.ctime([seconds])																										

This	function	of	time	module
is	 just	 like	 function	 asctime
(localtime	 (seconds))	 and
without	 arguments	 is	 like
asctime().

time.gmtime([seconds])																									

This	function	of	time	module
accepts	 an	 instant	 expressed
in	 seconds	 since	 the	 epoch
and	 returns	 a	 time-tuple	 xyz
with	the	UTC	time.	It	is	to	be
noted	 that	 zyz.tm_isdst	 is
always	0.

time.localtime([seconds])																						

This	function	of	time	module
accepts	 an	 instant	 expressed
in	 seconds	 since	 the	 epoch
and	 returns	 a	 time-tuple	 t
with	 the	 local	 time
(t.tm_isdst	 is	 0	 or	 1,
depending	 on	 whether	 DST
applies	 to	 instant	 secs	 by
local	rules).

This	function	of	time	module
accepts	 an	 instant	 expressed

time.mktime(tupletime)																						

as	a	 time-tuple	in	local	 time.
It	 returns	 a	 floating-point
value	 with	 the	 instant
expressed	 in	 seconds	 since
the	epoch.

time.sleep(secs)																												

This	function	of	time	module
suspends	 the	 calling	 thread
for	secs	seconds.

time.strftime(fmt[,tupletime])														

This	function	of	time	module
accepts	 an	 instant	 expressed
as	a	 time-tuple	in	local	 time.
It	 returns	 a	 string
representing	 the	 instant	 as
specified	by	string	fmt.

time.strptime(strg,format=’%a	%b	%d
%H:%M:%S	%Y’)

This	function	of	time	module
parses	 strg	 according	 to
format	 string	 format.	 It
returns	 the	 instant	 in	 time-
tuple	format.

time.time()																																

As	 discussed	 in	 above
examples,	 this	 function	 of
time	 module	 returns	 the
current	 time	 instant,	 a
floating-point	 number	 of
seconds	since	the	epoch.

time.tzset()																																

This	function	of	time	module
resets	the	time	conversion
rules	used	by	the	library
routines.

	

Summary	of	functions	in	Calendar	Module

Below	are	the	functions	available	in	Calendar	module.

Calendar	Functions Description

calendar.calendar(year,
width=2,line=1,space=6)	

This	 function	 of	 calendar
module	 returns	 a	 multiline
string	 with	 a	 calendar	 for
year	year	formatted	into	three
columns	 separated	 by	 space
spaces,	width	 is	 the	width	 in
characters	 of	 each	date;	 each
line	 has	 length
21*width+18+2*c.	line	 is	 the
number	 of	 lines	 for	 each
week.

calendar.firstweekday()												

This	 function	 of	 calendar
module	 returns	 the	 current
setting	 for	 the	 weekday	 that
starts	 each	 week.	 Default
value	is	0,	which	is	Monday.

calendar.isleap(year)															

This	 function	 of	 calendar
module	returns	True	if	 it	 is	a
leap	year;	otherwise,	False.

calendar.leapdays(ye1,ye2)												

This	 function	 of	 calendar
module	 returns	 the	 total
number	 of	 leap	 days	 in	 the
years	within	range	(ye1,	ye2).

This	 function	 of	 calendar
module	 returns	 a	 multiline
string	 with	 a	 calendar	 for
month	 month	 of	 year	 year,

calendar.month(year,	month,
width=2,line=1)		

one	 line	 per	 week	 plus	 two
header	 lines.	 width	 is	 the
width	 in	 characters	 of	 each
date;	 each	 line	 has	 length
7*w+6.	line	is	the	number	of
lines	for	each	week.

calendar.monthcalendar(year,	month)		

This	 function	 of	 calendar
module	 returns	 a	 list	 of	 lists
of	 ints.	 Each	 such	 sublist
denotes	a	week.	Days	outside
‘month’	month	of	‘year’	year
are	 set	 to	 0;	 days	 within	 the
month	are	set	to	their	day-of-
month,	1	and	up.

calendar.monthrange(year,	month)					

This	 function	 of	 calendar
module	 returns	 two	 integers.
The	 first	 one	 is	 the	 code	 of
the	weekday	for	 the	first	day
of	 the	 month	 month	 in	 year
year;	 the	 second	 one	 is	 the
number	of	days	in	the	month.
Month	 numbers	 are	 1
(January)	 to	 12	 (December).
Weekday	 codes	 are	 0
(Monday)	to	6	(Sunday).

calendar.prcal(year,w=2,l=1,c=6)				

This	 function	 of	 calendar
module	 works	 like	 print
calendar.calendar	(year,w,l,c).

calendar.prmonth(year,month,w=2,l=1)

This	 function	 of	 calendar
module	 works	 like	 print
calendar.month
(year,month,w,l).

calendar.setfirstweekday(weekday)			

This	 function	 of	 calendar
module	 sets	 the	 first	 day	 of
each	 week	 to	 weekday	 code
weekday.	Month	numbers	are
1	 (January)	 to	 12
(December).	 Weekday	 codes
are	 0	 (Monday)	 to	 6
(Sunday).

calendar.timegm(tupletime)										

The	 inverse	 of	 time.gmtime:
accepts	a	time	instant	in	time-
tuple	 form	 and	 returns	 the
same	 instant	 as	 a	 floating-
point	 number	 of	 seconds
since	the	epoch.

calendar.weekday(year,	month,	day)				

This	 function	 of	 calendar
module	 returns	 the	 weekday
code	 for	 the	 given	 date.
Month	 numbers	 are	 1
(January)	 to	 12	 (December).
Weekday	 codes	 are	 0
(Monday)	to	6	(Sunday).

Chapter	13
User	Defined	Functions

	

As	we	have	seen	in	previous	chapters,	Python	has	many	in-built	functions	and	the	popular
print	 ()	 function	 is	 one	 of	 those	 functions.	 Similarly,	 we	 can	 create	 our	 own	 functions
known	as	user	defined	functions	(UDF).	A	function	may	be	defined	as	a	block	of	code	that
is	 well	 organized	 and	 reusable	 multiple	 times	 to	 perform	 a	 number	 of	 operations	 in	 a
program	that	demands	high	modularity	and	reusability.

	

Syntax	of	a	Python	function

def	functionname	(parameters	or	arguments):

“docstring”

Block	of	code	or	indented	statements

return	[expression]

	

Rules	to	define	a	Python	function

							A	function	block	has	a	structure	which	starts	with	keyword	def	followed	by	the
name	of	function	and	parentheses	().

							Parentheses	can	have	number	of	input	arguments	or	parameters	within	it.	Also,
we	can	define	values	for	these	parameters	inside	these	parentheses.

	 	 	 	 	 	 	Python	function	can	have	its	first	statement	as	an	optional	statement	known	as
the	docstring	or	the	documentation	string	of	that	function.

							A	code	block	within	a	Python	function	starts	with	a	colon	(:)	and	all	statements
in	the	block	are	indented.

							A	Python	function	ends	with	return	[expression],	this	exits	a	function	returning
an	expression	value	and	control	 to	 the	caller.	A	return	may	or	may	not	 return	an
expression	value.

	

Calling	a	Python	function

Python	function	can	be	called	anywhere	in	 the	program	with	function	name	and	passing
the	values	to	its	parameters.	This	is	to	be	made	sure	that	we	should	send	equal	number	of
values	to	equal	number	of	parameters	i.e.	if	there	is	one	parameter	in	a	function	then	we
just	need	to	send	one	value,	similarly	if	there	are	two	parameters	then	we	need	to	send	two
values	 and	 so	 on.	 Such	 type	 of	 parameters	 are	 also	 known	 as	 required	 arguments	 to	 a
function.	Below	is	an	example	that	demonstrates	calling	of	a	Python	function.

	

Passing	by	reference	vs	Passing	by	value

All	parameters	or	arguments	in	Python	are	passed	by	reference.	Therefore,	if	we	change	a
parameter	that	refers	to	within	a	function,	this	change	will	be	reflected	in	the	actual	calling
function	as	shown	in	the	below	example.

	

	

In	 the	 second	 case,	 although	we	 have	 passed	 arguments	 by	 reference	 the	 change	 of	 list
overwritten	is	visible	only	in	the	local	scope	(parameter	elelist)	of	the	function	yet	outside
the	 function	 the	 actual	 list	 remains	 unaffected	 as	 shown	 in	 the	 above	 example	 for
listFunction2.

	

Python	function	arguments

A	function	in	Python	can	be	called	with	the	following	types	of	formal	arguments.

	 	 	 	 	 	 	Required	arguments:	 In	case	of	 the	required	arguments,	 the	arguments	 to	a
function	are	passed	in	correct	positional	order.	Therefore,	the	number	of	arguments
defined	in	a	function	should	match	exactly	the	number	of	arguments	passed	to	that
function.	If	 there	 is	mismatch,	system	will	 throw	an	error	as	shown	in	 the	below
example.

	

							Keyword	arguments:	In	python,	when	we	use	keyword	argument	in	a	function
call	 then	 the	caller	 identifies	 the	arguments	by	 its	name.	This	 feature	of	Python,
provides	 the	 flexibility	 to	place	 the	arguments	out	of	order	as	Python	 interpreter
uses	the	keywords	to	match	the	values	with	parameters.	This	is	demonstrated	in	the
below	example.	Here	we	have	entered	arguments	which	are	out	of	sequence	with
parameter	but	interpreter	by	using	the	keywords	processed	them	correctly.

	

	 	 	 	 	 	 	Default	arguments:	 Python	has	 a	 feature	of	 the	default	 arguments.	Default
argument	 assumes	 a	 default	 value	 if	 a	 value	 is	 defaulted	 or	 not	 provided	 in	 the
function	call	for	that	argument.	This	is	demonstrated	in	the	below	example.

	

							Variable-length	arguments:	Python	supports	the	feature	of	specifying	variable
length	 arguments.	 These	 arguments	 are	 not	 named	 in	 the	 function	 definition	 as
compared	to	required	and	default	arguments.	The	syntax	and	example	for	variable-
length	arguments	are	shown	below.

								

def	functionname([formal_args,]	*var_args_tuple):

“docstring”

Block	of	code	or	statements

return	[expression]

	

In	the	below	example,	during	the	first	function	call	when	single	argument	is	passed,	it	just
printed	 that	 argument	 and	 variable-length	 argument	 remained	 untouched.	 In	 the	 next
example,	 when	 three	 arguments	 are	 passed	 then	 variable-length	 argument	 parsed	 the
additional	arguments	and	helped	program	to	print	them.

	

	

Python	Anonymous	Functions

When	function	in	Python	are	not	declared	in	the	standard	manner	using	def	keyword	but
with	 use	 of	 lambda	 keyword	 are	 known	 as	Anonymous	 functions	 in	 Python.	 Syntax	 is
shown	below:

	

Syntax

lambda	[arg1	[,arg2,…..argn]]:expression

	

Below	are	the	features	of	the	anonymous	function.

	 	 	 	 	 	 	Lambda	 can	 accept	 any	 number	 of	 arguments	 but	 return	 just	 one	 value	 as
expression.	They	do	not	contain	multiple	expressions	or	commands.

	 	 	 	 	 	 	Since	 lambda	 requires	 an	 expression	 therefore,	 anonymous	 function	 cannot
make	a	direct	call	to	print.

	 	 	 	 	 	 	Lambda	 functions	 can	 have	 their	 own	 local	 namespace	 but	 cannot	 access
variables	 other	 than	 those	 present	 in	 their	 parameter	 list	 and	 in	 the	 global
namespace.

Below	is	an	example	of	anonymous	function.

	

	

Python	return	Statement

Using	return	statement	in	Python,	we	can	return	a	value	as	expression	and	the	control	back
to	the	caller.	Below	is	an	example.

	

	

Scope	of	Variables	in	Python

There	are	two	scopes	of	variables	defined	in	Python.

	 	 	 	 	 	 	Global	Variables:	These	are	 the	variables	defined	outside	 the	function	body
and	can	be	accessed	from	anywhere	within	the	program.

	 	 	 	 	 	 	Local	Variables:	These	are	the	variables	defined	inside	the	function	body	and
have	a	local	scope	of	accessibility.

Below	is	the	example	to	demonstrate	local	and	global	scope	of	a	variable	in	Python.

	

	

In	the	above	example,	the	variable	total	present	inside	the	function	has	a	local	scope	and
the	variable	 total	declared	at	 the	 top	of	 the	program	has	global	scope.	When	both	of	 the
variable	values	printed	shows	the	different	result	due	to	their	accessibility	scope.

Chapter	14
Organizing	Code	With	Modules

	

In	this	chapter,	we	are	going	to	learn	about	modules	in	Python	language.	Modules	allows
us	to	logically	organize	our	Python	code	which	makes	the	code	easier	to	understand	and
use.	 In	 Python	 language,	 a	 module	 is	 just	 a	 file	 consisting	 of	 Python	 code	 which	 has
several	in-built	or	user	defined	functions.

	

Python	import	Statement

We	can	call	the	Python	code	or	functions	present	in	a	file	as	module	by	using	the	import
statement	followed	by	the	Python	file	name.	Below	is	the	syntax	for	import	statement	in
Python.

import	module1[,	module2[,…	moduleN]

	

Below	is	an	example	to	work	in	Python	modules.

Creating	a	Python	file	to	be	used	as	module.

	

Calling	the	above	module	and	operating	on	the	user	defined	function	in	the	current	Python
program	is	shown	in	the	below	example.

	

	

Python	from…import	Statement

In	 Python	 language,	 from…import	 statement	 lets	 us	 import	 only	 specific	 and	 not	 all
attributes	from	a	module	into	the	current	namespace.	It	has	the	following	syntax	−

from	modulename	import	name1[,	name2[,	…	nameN]]

	

For	 example,	 if	 we	 need	 to	 import	 only	 the	 function	 addition	 from	 the	 above	 module
ReturnStatement,	 then	 we	 use	 the	 following	 statement	 −	 from	 ReturnStatement	 import
addition

This	 statement	 does	 not	 import	 the	 entire	 module	 ReturnStatement	 into	 the	 current
namespace	but	 it	 just	 introduces	 the	function	addition	 from	the	module	ReturnStatement
into	the	global	symbol	table	of	the	importing	module.	This	is	demonstrated	in	the	below
example.

	

	

Python	from…import*	Statement

Using	this	Python	statement,	we	can	import	all	names	or	functions	from	a	module	into	the
current	namespace.	It	has	the	following	syntax.

from	modulename	import	*

Although,	 it	 provides	 an	 easy	way	 to	 import	 everything	 from	a	module	 into	 the	 current
namespace	yet	this	statement	is	used	rarely.

	

Locating	Python	Modules

In	Python,	when	we	import	a	module,	the	Python	interpreter	searches	for	the	module	in	the
following	sequences.	First	in	the	current	directory,	if	that	module	isn’t	located	then	Python
searches	each	directory	in	the	shell	variable	PYTHONPATH.	If	 it	fails	here	as	well	 then
lastly	Python	checks	the	default	path.

Search	path	for	module	 is	stored	 in	 the	system	module	sys	as	 the	sys.path	variable.	The
sys.path	 variable	 contains	 the	 current	 directory,	 PYTHONPATH,	 and	 the	 installation-
dependent	default.

	

The	PYTHONPATH	Variable:

The	PYTHONPATH	is	an	environment	variable	that	consists	of	a	list	of	directories.	Below
are	the	syntaxes	of	PYTHONPATH	for	Windows	and	UNIX.

	

PYTHONPATH	from	a	Windows	system:

set	PYTHONPATH=c:\Python34\lib;

	

PYTHONPATH	from	a	UNIX	system:

set	PYTHONPATH=/usr/local/lib/python

	

Python	in-built	functions	for	Modules

Below	are	the	in-built	Python	functions	that	are	used	while	working	with	modules.

	

Functions Description

dir()	

The	dir	()	Python	built-in	function	returns	a	sorted	list	of
strings	containing	the	names	defined	by	a	module.	E.g.	if
module	 name	 is	math	 then	 dir	 (math)	will	 list	 down	 all
the	names	present	in	that	module.

globals()

If	Python	in-built	function	globals	()	is	called	from	within
a	function	then	it	will	return	all	the	names	(as	dictionary
datatype)	 that	 can	 be	 accessed	 globally	 from	 that
function.

locals()

If	Python	in-built	function	locals	()	is	called	from	within
a	function	then	it	will	return	all	the	names	(as	dictionary
datatype)	that	can	be	accessed	locally	from	that	function.

reload()	

In	 Python,	 when	we	 import	 a	module	 into	 a	 script,	 the
code	in	the	top-level	portion	of	a	module	is	executed	only
once.	Therefore,	if	we	want	to	execute	the	top-level	code
in	 a	 module	 again,	 then	 we	 have	 to	 use	 the	 reload	 ()
function.	 This	 function	 imports	 a	 previously	 imported
module	again.

	

Packages	in	Python

In	 Python,	 a	 package	 may	 be	 defined	 as	 a	 hierarchical	 file	 directory	 structure	 which
defines	 a	 single	Python	 application	 environment	 that	 consists	 of	modules,	 sub-packages
and	so	on.

Using	eclipse,	we	can	give	the	package	name	when	we	are	creating	a	new	Python	program
file	as	shown	in	the	below	screenshot.

	

After	 click	of	 finish	button,	 a	 new	package	with	name	as	module	will	 be	 created	 along
with	_init_.py	file	as	shown	in	the	below	screenshot.

	

	

In	order	to	make	all	of	our	existing	required	functions	available	for	files	present	within	a
new	package,	we	import	Python	file	present	at	PYTHONPATH	in	this	in	__init__.py	file.
For	 this	we	need	 to	put	explicit	 import	statements	 in	__init__.py	as	shown	in	 the	below
example.

	

	

After	setting	up	above	import	in	__init__.py	file,	we	can	now	call	addition	function	from
the	Python	program	that	present	 in	a	new	package	module.	Only	 things	 that	we	need	 to
make	sure	here	are	as	follows.

							First	we	need	to	declare	import	statement	and	the	current	package	name	where
this	file	is	present.	This	will	be	the	first	statement	in	the	program	file.

							Next,	we	can	call	the	existing	function	(already	imported)	starting	with	current
package	name	(e.g.,	module.addition	(4,	5)).

								

	

Chapter	15
I/O	Input	Used	in	Python

	

In	the	previous	chapters,	we	learned	to	use	print	function	for	printing	the	output	on	screen
or	console.	In	this	we	chapter	we	are	going	to	learn	about	I/O	(accepting	input	and	printing
output	on	console)	and	basic	file	operations.

	

Python	print	Function

By	using	simple	print	function	as	print	(set	of	strings	or	variables),	the	system	will	print
the	content	on	to	the	console.

E.g.,	print	(“Hello	World!”)

	

Python	input	Function

Python	has	input	([prompt])	as	its	in-built	function	that	read	one	line	from	standard	input
assuming	it	as	a	valid	Python	expression	and	returns	it	to	the	system	as	a	string.	Below	is
an	example.

	

Opening	and	Closing	files	in	Python

Python	language	provides	basic	functions	and	methods	which	are	necessary	to	manipulate
files	by	default.	We	can	do	the	file	manipulation	in	Python	by	using	a	file	object.

	

The	open	()	Function

Python	has	in-built	open	()	function	that	creates	a	file	object	with	which	we	can	read	or
write	a	file	and	call	other	support	methods	associated	with	it.

Syntax

file	object	=	open(file_name	[,	access_mode][,	Buffering])

Description	of	the	parameter	in	detail:

							file_name:	It	is	a	string	value	that	contains	the	name	of	the	file	that	we	want	to
access.

	 	 	 	 	 	 	access_mode:	It	determines	the	mode	in	which	the	file	has	to	be	opened,	i.e.,
write,	read,	append,	etc.	Given	below	is	the	complete	list	of	possible	values	in	the
table.	This	parameter	is	optional	with	default	file	access	mode	as	read	(r).

	

Modes Description

r
This	mode	opens	a	file	in	read	only	mode.	Beginning	of	the
file	has	the	file	pointer.	This	is	the	default	mode.

rb

This	mode	opens	a	file	in	read	only	mode	in	binary	format.
Beginning	of	the	file	has	the	file	pointer.	This	is	the	default
mode.

r+
This	mode	opens	a	file	in	both	reading	and	writing	mode.
Beginning	of	the	file	has	the	file	pointer.

rb+
This	mode	opens	a	file	in	both	reading	and	writing	mode	in
binary	format.	Beginning	of	the	file	has	the	file	pointer.

w

This	mode	opens	a	file	in	writing	only	mode.	It	overwrites
the	 file	 if	 the	 file	 exists.	 If	 the	 file	 does	not	 exist,	 then	 it
creates	a	new	file	for	writing.

wb

This	 ode	 opens	 a	 file	 in	 writing	 only	 mode	 in	 binary
format.	 It	 overwrites	 the	 file	 if	 the	 file	 exists.	 If	 the	 file
does	not	exist,	then	it	creates	a	new	file	for	writing.

w+

This	mode	opens	a	file	in	both	writing	and	reading	mode.	It
overwrites	the	existing	file	if	the	file	exists.	If	the	file	does
not	exist,	then	it	creates	a	new	file	for	reading	and	writing.

wb+

This	mode	opens	a	file	in	both	writing	and	reading	mode	in
binary	 format.	 It	 overwrites	 the	 existing	 file	 if	 the	 file
exists.	 If	 the	 file	does	not	exist,	 then	 it	 creates	a	new	 file
for	reading	and	writing.

a

This	mode	opens	 a	 file	 for	 appending.	The	 file	 pointer	 is
present	 at	 the	 end	 of	 the	 file	 if	 the	 file	 exists.	 If	 the	 file
does	not	exist,	then	it	creates	a	new	file	for	writing.

ab

This	mode	opens	a	file	for	appending	in	binary	format.	The
file	pointer	is	at	the	end	of	the	file	if	the	file	exists.	If	the
file	does	not	exist,	then	it	creates	a	new	file	for	writing.

a+

This	 mode	 opens	 a	 file	 for	 both	 appending	 and	 reading.
The	file	pointer	is	at	the	end	of	the	file	if	the	file	exists.	If
the	file	does	not	exist,	then	it	creates	a	new	file	for	reading
and	writing.

ab+

This	mode	opens	a	file	for	both	appending	and	reading	in
binary	format.	The	file	pointer	is	at	the	end	of	the	file	if	the
file	exists.	 If	 the	 file	does	not	exist,	 then	 it	 creates	a	new
file	for	reading	and	writing.

	

	

	 	 	 	 	 	 	Buffering:	 It	 can	 have	 value	 as	 negative,	 0,	 1,	 2,	 etc.	Depending	 on	 these
values,	 if	 it	 is	 set	 to	 0	 then	 no	 buffering	 takes	 place.	 If	 it	 is	 set	 to	 1	 then	 line
buffering	is	performed	while	accessing	a	file.	If	this	buffering	value	as	an	integer
greater	than	1	then	buffering	action	takes	place	with	the	indicated	buffer	size.	If	the
value	is	negative,	then	the	buffer	size	has	the	system	default	behavior.

	

The	file	Object	Attributes

When	 a	 data	 file	 is	 opened	 then	 we	 get	 a	 file	 object	 using	 which	 we	 get	 various
information	related	to	that	file.

Given	below	are	the	file	attributes	which	provide	the	information	associated	with	the	file
object.

Attribute Description

This	attribute	returns	true	if	file	is	closed,	otherwise

file.closed false.

file.mode
This	 attribute	 returns	 access	 mode	 with	 which	 file
was	opened.

file.name This	attribute	returns	name	of	the	file.

file.softspace
This	 attribute	 returns	 false	 if	 space	 explicitly
required	with	print,	otherwise	true.

	

Below	is	the	example	for	reading	file	Attributes	from	a	file	object.

	

	

Python	in-built	Methods	for	File	Operations

Below	table	has	the	in-built	function	name	and	description	for	a	file.

	

Methods Description

close()

The	 close	 ()	 method	 of	 a	 file	 object	 flushes	 any
unwritten	information	and	closes	the	file	object.	Once
file	 is	 closed	 the	no	more	writing	 can	be	done.	E.g.
fileObject.close	().

write()

The	write	()	method	writes	string	data	to	an	open	file.
Python	strings	can	have	binary	data	as	well	as	text.	It
is	to	be	note	that	the	write	()	method	does	not	add	a
newline	character	(‘\n’)	to	the	end	of	the	string.	E.g.
fileObject.write	(string).

read()

The	read	()	method	reads	a	string	data	from	an	open
file.	 Python	 strings	 can	 have	 binary	 data	 as	well	 as
text	data.	E.g.	 fileObject.read	([count]);	count	 is	 the
passed	 parameter	 which	 represents	 the	 number	 of
bytes	 to	 be	 read	 from	 the	 opened	 file.	 If	 count	 is
missing,	then	it	tries	to	read	data	from	file	as	much	as
possible	until	the	end	of	file.

tell()

The	function	tell	()	method	tells	us	about	the	current
position	within	 the	 file.	 It	 tells	 us	 about	 position	 of
the	 next	 read	 or	 write	 of	 string	 data	 at	 that	 many
bytes	 from	 the	 beginning	 of	 the	 file.	 E.g.
fileObject.tell	().

seek(offset[,
from])

The	function	seek	(offset	[,	from])	is	used	to	change
the	 current	 file	 position.	 The	 offset	 argument
indicates	the	number	of	bytes	that	to	be	moved.	The
‘from’	argument	specifies	the	reference	position	from
where	the	bytes	are	required	to	be	moved.
If	from	has	value	set	to	0,	it	means	use	the	beginning
of	 the	 file	 as	 the	 reference	position	and	 it	has	value
set	 to	 1	 means	 use	 the	 current	 position	 as	 the
reference	position	and	if	it	has	value	set	to	2	then	the
end	 of	 the	 file	 would	 be	 taken	 as	 the	 reference
position.	E.g.	fileObject.seek	(0,	0).

rename()

The	 rename	 ()	 method	 takes	 two	 arguments,	 the
current	 filename	 and	 the	 new	 filename.	 E.g.
fileObject.rename	 (current_file_name,
new_file_name).

remove()

The	 remove	 ()	 method	 is	 used	 to	 delete	 files	 by
supplying	the	name.	It	can	be	used	to	delete	files	by
supplying	 the	 name	 of	 the	 file	 to	 be	 deleted	 as	 the
argument.	 E.g.	 fileObject.remove
(current_file_name).

mkdir()

The	 mkdir	 ()	 method	 of	 the	 os	 module	 is	 used	 to
create	directories	in	the	current	directory.	We	need	to
supply	an	argument	 to	 this	method	 that	 contains	 the
name	 of	 the	 directory	 to	 be	 created.	 E.g.	 os.mkdir
(“newdir”).

The	 chdir	 ()	 method	 is	 used	 to	 change	 the	 current
directory.	 The	 chdir	 ()	 method	 takes	 an	 argument,
that	 is	 the	 name	 of	 the	 directory	 that	 you	 want	 to

chdir() make	the	current	directory.	E.g.	os.chdir	(“newdir”).

getcwd()
The	getcwd	()	method	 is	used	 to	display	 the	current
working	directory.	E.g.	os.getcwd	().

rmdir()

The	 rmdir	 ()	method	 is	 used	 to	 delete	 the	 directory,
which	 is	 passed	 as	 an	 argument	 in	 the	method.	E.g.
os.rmdir	(‘dirname’).

	

Example	on	file	operations	using	Python	in-built	file	methods

Chapter	16
Exceptions	and	Assertions

	

Python	language	has	two	very	important	features	to	handle	any	unexpected	error	that	may
occur	while	 executing	 the	 Python	 programs	 and	 to	 add	 debugging	 capabilities	 in	 them.
Those	features	are	as	follows.

	

	 	 	 	 	 	 	Exception	Handling:	While	writing	a	Python	code,	if	we	have	a	feeling	that
have	some	part	of	the	code	may	raise	an	exception	then	we	can	handle	that	part	by
placing	the	code	in	a	try:	block.	After	the	try:	block,	include	an	except:	statement,
followed	by	a	block	of	 code	 that	handles	 the	problem	as	 effectively	 as	possible.
Syntax	is	given	below.

try:

We	do	our	operations	here;

………………….

except	Exception	I:

If	Exception	I,	then	execute	this	block.

except	Exception	II:

If	Exception	II,	then	execute	this	block.

………………….

else:			If	no	exception	then	execute	this	block.

	

Few	points	to	remember	about	Python	exception	handling.

1.	 A	 single	 try	 statement	 can	 have	multiple	 except	 statements.	 This	 feature
can	be	well	utilized	when	the	try	block	contains	statements	that	may	throw
more	than	one	and	different	types	of	exceptions.

2.	 It	supports	feature	to	provide	a	generic	except	clause,	which	can	handle	any
type	of	exception.

3.	 Syntactically,	we	can	include	an	else-clause	after	the	except	clause(s).	The
code	 in	 the	else-block	will	be	executed	only	 if	 the	code	 in	 the	 try:	block
does	not	raise	an	exception.

4.	 The	else-block	is	a	useful	programming	place	for	code	that	does	not	need
the	try:	block’s	protection.

Below	is	a	list	of	standard	Exceptions	available	in	Python	programming	language.

	

EXCEPTION	NAME DESCRIPTION

Exception
This	 exception	 is	 the	 base	 class	 for	 all
exceptions.

StopIteration

This	 exception	 is	 raised	 when	 the	 next	 ()
method	of	an	iterator	does	not	point	to	any
object.

SystemExit
This	 exception	 is	 raised	 by	 the	 sys.exit	 ()
function.

StandardError

This	 exception	 is	 the	 base	 class	 for	 all
built-in	 exceptions	 except	 SystemExit	 and
StopIteration.

ArithmeticError
This	 exception	 is	 the	 base	 class	 for	 all
errors	that	occur	for	numeric	calculation.

OverflowError
This	exception	is	raised	when	a	calculation
exceeds	maximum	limit	for	a	numeric	type.

FloatingPointError
This	 exception	 is	 raised	 when	 a	 floating
point	calculation	fails.

ZeroDivisonError

This	 exception	 is	 raised	 when	 division	 or
modulo	by	zero	takes	place	for	all	numeric
types.

AssertionError
This	exception	is	raised	in	case	of	failure	of
the	Assert	statement.

AttributeError
This	exception	is	raised	in	case	of	failure	of
attribute	reference	or	assignment.

EOFError

This	 exception	 is	 raised	 when	 there	 is	 no
input	from	either	 the	raw_input	()	or	 input
()	function	and	the	end	of	file	is	reached.

ImportError
This	 exception	 is	 raised	 when	 an	 import
statement	fails.

KeyboardInterrupt

This	 exception	 is	 raised	 when	 the	 user
interrupts	 program	 execution,	 usually	 by
pressing	Ctrl+c.

LookupError
This	 exception	 is	 the	 base	 class	 for	 all
lookup	errors.

IndexError
Raised	 when	 an	 index	 is	 not	 found	 in	 a
sequence.

KeyError
This	exception	is	raised	when	the	specified
key	is	not	found	in	the	dictionary.

NameError

This	exception	is	raised	when	an	identifier
is	 not	 found	 in	 the	 local	 or	 global
namespace.

UnboundLocalError

This	 exception	 is	 raised	 when	 trying	 to
access	 a	 local	 variable	 in	 a	 function	 or
method	but	no	value	has	been	 assigned	 to
it.

EnvironmentError

This	 exception	 is	 the	 base	 class	 for	 all
exceptions	 that	 occur	 outside	 the	 Python
environment.

IOError

This	 exception	 is	 raised	 when	 an	 input/
output	 operation	 fails,	 such	 as	 the	 print
statement	 or	 the	 open	 ()	 function	 when
trying	to	open	a	file	that	does	not	exist.

IOError
This	 exception	 is	 raised	 for	 operating
system-related	errors.

SyntaxError
This	 exception	 is	 raised	 when	 there	 is	 an
error	in	Python	syntax.

IndentationError

This	 exception	 is	 raised	 when	 indentation
is	not	specified	properly.

SystemError

This	 exception	 is	 raised	 when	 the
interpreter	 finds	 an	 internal	 problem,	 but
when	 this	 error	 is	 encountered	 the	Python
interpreter	does	not	exit.

SystemExit

This	 exception	 is	 raised	 when	 Python
interpreter	 is	 quit	 by	 using	 the	 sys.exit()
function.	If	not	handled	in	the	code,	causes
the	interpreter	to	exit.

ValueError

This	 exception	 is	 raised	when	 the	 built-in
function	 for	a	data	 type	has	 the	valid	 type
of	 arguments,	 but	 the	 arguments	 have
invalid	values	specified.

RuntimeError
This	 exception	 is	 raised	when	 a	 generated
error	does	not	fall	into	any	category.

NotImplementedError

This	 exception	 is	 raised	 when	 an	 abstract
method	that	needs	to	be	implemented	in	an
inherited	class	is	not	actually	implemented.

	

Python	example	on	exception	handling.

	

	

The	try-finally	Clause

Finally	is	the	block	that	comes	at	the	last	and	is	always	executed	irrespective	of	exception
occurred	or	not.	This	is	demonstrated	in	the	below	example.

	

	 	 	 	 	 	 	Assertions:	An	assertion	in	Python	can	be	defined	as	a	sanity-check	that	can
turn	 on	 or	 turn	 off	 when	 we	 are	 done	 with	 the	 testing	 of	 the	 program.	 An
expression	is	tested	for	the	result,	and	if	that	comes	up	false,	an	exception	is	raised.
Below	is	the	syntax	for	assertions.

assert	Expression[,	Arguments]

If	the	assertion	fails,	Python	will	use	an	ArgumentExpression	as	the	argument	for	the
AssertionError.	AssertionError	 is	 an	 exceptions	 that	 can	 be	 caught	 and	 handled	 like
any	 other	 exception	 using	 the	 try-except	 statement	 If	 this	 exception	 is	 not	 handled,
then	 it	 will	 terminate	 the	 program	 and	 produce	 a	 traceback	 as	 shown	 in	 the	 below
example.

Given	below	 is	 an	example	on	Python	Assertion,	here,	we	are	checking	 for	 account
balance	if	it	 is	lower	than	minimum	balance	of	5000.	During	first	test	for	balance	of
500,	it	passed	the	test	therefore	no	AssertionError	happened.	However,	in	the	second
case	 the	 input	 balance	 is	 1000	 which	 is	 less	 than	 minimum	 balance	 therefore
AssertionError	was	raised	in	the	console	with	our	pre-defined	message	string	(Account
is	in	good	condition	above	minimum	balance).

	

Chapter	17
Object	Oriented	Programming

	

Python	 was	 an	 object-oriented	 language	 from	 the	 day	 it	 was	 made.	 Let’s	 take	 a	 quick
revision	on	OOP	(Object	Oriented	Programming)	concepts.

	

OOP	Concepts

	 	 	 	 	 	 	Class:	A	class	 is	a	user-defined	prototype	 for	an	object	 that	defines	a	 set	of
attributes.	 The	 attributes	 are	 the	 data	members	 (class	 or	 instance	 variables)	 and
methods	that	are	usually	accessed	via	dot	notation.

	 	 	 	 	 	 	Class	variable:	A	 class	 variable	 is	 the	 class	 reference	 that	 is	 shared	 by	 all
instances	of	a	class.	Class	variables	are	defined	within	a	class	but	they	are	always
outside	any	of	the	class’s	methods.

							Data	member:	It	is	a	class	or	instance	variable	that	holds	data	associated	with	a
class	and	its	objects.

							Instance:	An	individual	object	is	an	instance	of	a	certain	class.

							Instantiation:	The	creation	of	an	instance	of	a	class	is	called	instantiation	that
creates	a	class	object.

							Method:	It	is	the	name	given	to	the	function	that	is	defined	inside	the	class.	It
performs	the	actual	operation	on	the	variables.

							Function	overloading	(Function	Polymorphism):	Two	or	more	functions	with
the	 same	 name	 but	 performing	 the	 different	 operation	 based	 on	 number	 of
parameters,	data	type,	etc.

	 	 	 	 	 	 	Operator	 overloading	 (Operator	 Polymorphism):	 A	 single	 operator	 has
assignment	 of	more	 than	one	 function.	E.g.	 ‘+’	 operator	 doing	 the	mathematical
addition	of	two	numbers	as	well	as	concatenation	of	two	strings.

							Inheritance:	The	transfer	of	the	characteristics	or	traits	from	parent	class	to	the
child	class.	It	encourages	reusability.

	 	 	 	 	 	 	 Instance	variable:	 It	 is	 a	 variable	 that	 is	 defined	 inside	 a	method	 and	 just
belongs	only	to	the	current	instance	of	a	class.

							Object:	It	is	a	unique	instance	of	a	data	structure	(variables	and	methods)	that’s
defined	inside	its	class.

								

Creating	Classes

In	Python,	the	class	statement	creates	a	new	class	definition.	It	has	the	following	syntax.

class	ClassName:

‘Optional	class	documentation	string’

class_suite/component	statements

	 	 	 	 	 	 	The	 class	 has	 an	 optional	 documentation	 string,	which	 can	 be	 accessed	 via
ClassName.__doc__.

	 	 	 	 	 	 	The	 class_suite	 consists	 of	 all	 the	 component	 statements	 that	 define	 class
members,	data	attributes	and	functions.

	

Creating	Instance	Objects

An	instance	of	class	is	created	by	calling	the	class	using	class	name	and	pass	in	whatever
arguments	its	__init__	method	accepts.

	

Accessing	Attributes

Attributes	 of	 the	 class	 can	 be	 accessed	 through	 the	 object’s	 attributes	 using	 the	 dot
operator	with	object.

	

Class	demonstration	in	Python

In	the	below	example,	we	are	going	to	create	a	class	and	then	instantiate	its	three	objects
to	access	their	attributes.

Chapter	18
Python	Regular	Expressions

	

You	might	have	heard	 the	 term	‘Regular	Expressions’	 in	UNIX	where	 these	are	used	 to
match	or	 find	other	 strings	or	 sets	of	 strings	based	on	 specialized	 syntax	 in	 the	 form	of
patterns.	In	the	similar	way,	Python	regular	expression	is	a	special	sequence	of	characters
that	helps	to	match	a	string	or	sets	of	strings	based	on	a	particular	pattern.

In	 Python,	 the	 module	 known	 as	 “re”	 provides	 the	 support	 for	 regular	 expressions	 in
Python.	 If	 any	error	occurs	while	 compiling	or	handling	a	 regular	 expression	 in	Python
then	this	“re”	module	will	raise	an	exception	known	as	“re.error”.

There	 are	 two	 important	 functions	 in	 the	 “re”	module.	 They	 are	 “match”	 and	 “search”
functions.	In	the	following	Python	regular	expression	examples	we	are	going	to	use	Raw
Strings	as	“rexpression”.

	

The	match	Function

It	is	the	function	present	in	“re”	module	that	matches	the	RE	pattern	to	string	with	optional
flags.

	

Syntax

re.match	(pattern,	string,	flags=0)

	

Following	is	the	description	of	these	parameters.

PARAMETERS DESCRIPTION

Pattern
It	 accepts	 the	 regular	 expression	 that	 to	be
matched.

String
This	is	the	string,	which	would	be	searched
to	match	the	pattern	at	the	beginning.

Flags
This	 exception	 is	 raised	 by	 the	 sys.exit	 ()
function.

	

The	 re.match	 function	 returns	 the	matched	 object	when	 the	matching	 is	 successful	 and
none	 when	 the	 matching	 fails.	 After	 that,	 we	 can	 use	 “group	 (num)”	 or	 “groups	 ()”
function	on	matched	object	to	get	matched	expression.

	

Match	Object	Methods DESCRIPTION

group	(num=0)
This	 function	 returns	 entire	 match	 or
specific	subgroup	num.

groups	()

This	 function	 returns	 all	 matching
subgroups	in	a	 tuple.	 It	will	be	empty	if
there	aren’t	any.

	

	

Regular	expression	example	for	match	function

When	we	execute	the	above	Python	program,	we	will	observe	the	following	output.

	

The	search	Function

It	 is	 the	function	present	 in	“re”	module	 that	searches	for	 first	occurrence	of	RE	pattern
within	string	with	optional	flags.

	

Syntax

re.search	(pattern,	string,	flags=0)

	

Following	is	the	description	of	these	parameters.

	

PARAMETERS DESCRIPTION

Pattern
It	 accepts	 the	 regular	 expression	 that	 to	be
matched.

String
This	is	the	string,	which	would	be	searched
to	match	the	pattern	anywhere.

Flags

This	 parameter	 is	 used	 to	 specify	different
flags	 using	 bitwise	 OR	 (|).	 These	 are	 the
modifiers	 which	 are	 listed	 in	 the	 table
below.

	

The	 re.search	 function	 returns	 the	matched	 object	when	 the	matching	 is	 successful	 and

none	 when	 the	 matching	 fails.	 After	 that,	 we	 can	 use	 “group	 (num)”	 or	 “groups	 ()”
function	on	matched	object	to	get	the	matched	expression.

	

Match	Object	Methods DESCRIPTION

group	(num=0)
This	 function	 returns	 entire	 match	 or
specific	subgroup	num.

groups	()

This	 function	 returns	 all	 matching
subgroups	 in	a	 tuple.	 It	will	be	empty	if
there	aren’t	any.

	

	

Regular	expression	example	for	search	function

	

When	we	execute	the	above	Python	program,	we	will	observe	the	following	output.

	

	

Match	vs	Search	function	of	“re”	module

Both	of	these	functions	are	different	primitive	operations	which	do	the	matching	of	string
or	 set	 of	 strings	 based	 on	 a	 particular	 pattern.	 The	 only	 difference	 is	 in	 their	 way	 of
operation.	 Regular	 expressions:	match	 function	 checks	 for	 the	 matching	 pattern	 at	 the
beginning	 of	 the	 string	 whereas	 Regular	 expressions:	 search	 function	 checks	 for	 the
matching	pattern	 anywhere	 in	 that	 string.	 If	we	compare	Python	 language	with	 the	Perl
language	 in	 term	 of	 matching	 of	 strings	 using	 regular	 expressions,	 then	 expressions:
search	is	the	default	matching	operation	for	the	Perl	language.

	

Search	and	Replace

Python	“re”	module	has	an	important	function	known	as	“sub”.	This	function	is	used	to	do
search	and	replace	operations.	Let’s	understand	 this	with	 the	help	of	following	example.
Following	is	the	syntax	for	this	method.

	

Syntax

re.sub	(pattern,	replace,	string,	max=0)

	

This	“sub”	method	or	function	replaces	all	occurrences	of	the	Regular	Expression	pattern
present	 in	 the	 string	 with	 “replace”	 string	 parameter,	 it	 will	 substitute	 all	 of	 the
occurrences	 unless	 max	 limit	 is	 passed	 in	 the	 parameter.	 This	 method	 will	 return	 a
modified	 string	 after	 matching	 regular	 expression	 substitution	 with	 “replace”	 string
parameter.

	

PARAMETERS DESCRIPTION

Pattern
It	 accepts	 the	 regular	 expression	 that	 to	be
matched.

Replace

It	 is	 the	 string	 which	 will	 replace	 or
substitute	the	matching	portion	in	the	main
String	passed	as	a	parameter.

String

This	 is	 the	 main	 string,	 which	 would	 be
matched	 to	match	 the	 pattern	 anywhere	 in
the	string.

Max

This	 is	 an	 optional	 parameter	 that	 defines
the	 limit	 for	 maximum	 number	 of
substitution	with	the	matching	pattern.

	

	

Let’s	understand	this	“sub”	method	with	the	help	of	following	example.

	

	

When	we	execute	the	above	Python	program,	we	will	observe	the	following	output.

	

	

Regular	Expression	Modifiers:	Option	Flags

Regular	expression	literals	includes	an	optional	modifiers	that	controls	various	aspects	of
matching.	 These	 optional	 modifiers	 are	 specified	 as	 an	 optional	 flag.	 We	 can	 supply
multiple	modifiers	by	using	exclusive	OR	(|)	operation.	Following	are	the	representation
for	such	an	operation.

	

MODIFIERS DESCRIPTION

re.I This	modifier	performs	a	case-insensitive
matching.

re.L This	modifier	interprets	words	according	to	the
current	locale.	This	type	of	interpretation	affects
the	alphabetic	group	(\w	and	\W)	as	well	as	word
boundary	behavior	(\b	and	\B).

re.M This	modifier	makes	$	match	the	end	of	a	line,
and	not	just	the	end	of	the	string.	It	makes	^	match
the	start	of	any	line,	and	not	just	the	start	of	the
string.

re.S This	modifier	is	used	to	make	a	period	(dot)	match
with	any	character	and	it	includes	a	newline	as
well.

re.U This	modifier	interprets	letters	according	to	the
Unicode	character	set	and	this	flag	affects	the
behavior	of	\w,	\W,	\b,	\B.

re.X This	modifier	permits	“cuter”	regular	expression
syntax.	It	ignores	whitespace	except	those	which
are	present	inside	a	set	[]	or	when	escaped	by	a
backslash.	It	treats	un-escaped	#	as	a	comment
marker.

	

	

Regular	Expression	Pattern	Summary

PATTERN DESCRIPTION

^ This	pattern	is	used	to	match	the	beginning	of	line.

$ This	pattern	is	used	to	match	the	end	of	line.

. This	pattern	is	used	to	match	any	single	character
except	newline.	Using	m	option	allows	it	to	match
newline	as	well.

[…] This	pattern	is	used	to	match	any	single	character
in	brackets.

[^…] This	pattern	is	used	to	match	any	single	character
not	in	brackets

re* This	pattern	is	used	to	match	0	or	more
occurrences	of	preceding	expression.

re+ This	pattern	is	used	to	match	1	or	more	occurrence
of	preceding	expression.

re? This	pattern	is	used	to	match	0	or	1	occurrence	of
preceding	expression.

re{	n} This	pattern	is	used	to	match	exactly	n	number	of
occurrences	of	preceding	expression.

re{	n,} This	pattern	is	used	to	match	n	or	more
occurrences	of	preceding	expression.

re{	n,	m} This	pattern	is	used	to	match	at	least	n	and	at	most
m	occurrences	of	preceding	expression.

a|	b This	pattern	is	used	to	match	either	a	or	b.

(re) This	pattern	is	used	to	group	the	regular
expressions	and	remembers	matched	text.

(?imx) This	pattern	will	temporarily	toggle	on	i,	m,	or	x
options	within	a	regular	expression.	If	it	is	present
with	in	parentheses,	then	only	that	area	is	affected.

(?-imx) This	pattern	will	temporarily	toggle	off	i,	m,	or	x
options	within	a	regular	expression.	If	it	is	present
with	in	parentheses,	then	only	that	area	is	affected.

(?:	re) This	pattern	is	used	to	group	the	regular
expressions	without	remembering	matched	text.

(?imx:	re) This	pattern	will	temporarily	toggle	on	i,	m,	or	x
options	within	parentheses.

(?-imx:	re) This	pattern	will	temporarily	toggle	off	i,	m,	or	x
options	within	parentheses.

(?#…) This	pattern	is	used	to	match	comment.

(?=	re) This	pattern	is	used	to	specify	the	position	using	a
pattern.	It	doesn’t	have	a	range.

(?!	re) This	pattern	is	used	to	specify	the	position	using
pattern	negation.	It	doesn’t	have	a	range.

(?>	re) This	pattern	is	used	to	match	the	independent
pattern	without	backtracking.

\w This	pattern	is	used	to	match	the	word	characters.

\W This	pattern	is	used	to	match	the	non-word
characters.

\s This	pattern	is	used	to	match	the	whitespace.
Equivalent	to	[\t\n\r\f].

\S This	pattern	is	used	to	match	the	non-whitespace.

\d This	pattern	is	used	to	match	the	digits.	Equivalent
to	[0-9].

\D This	pattern	is	used	to	match	the	non-digits.

\A This	pattern	is	used	to	match	the	beginning	of
string.

\Z This	pattern	is	used	to	match	the	end	of	string.	If	a
newline	exists,	then	it	matches	just	before
newline.

\z This	pattern	is	used	to	match	the	end	of	string.

\G This	pattern	is	used	to	match	the	point	where	last
match	finished.

\b This	pattern	is	used	to	match	the	word	boundaries
when	outside	brackets.	It	also	matches	backspace
(0x08)	when	inside	brackets.

\B This	pattern	is	used	to	match	the	non-word
boundaries.

\n,	\t,	etc. This	pattern	is	used	to	match	newlines,	carriage
returns,	tabs,	etc.

\1…\9 This	pattern	is	used	to	match	the	nth	grouped
subexpression.

\10 This	pattern	is	used	to	match	the	nth	grouped
subexpression	if	it	matched	already.	Otherwise	it
will	refer	to	the	octal	representation	of	a	character
code.

(?!	re) This	pattern	is	used	to	specify	the	position	using
pattern	negation.	It	doesn’t	have	a	range.

Chapter	19

Python	Multithreaded	Programming
	

Python	 programming	 language	 is	 a	multi-threading	 language.	 It	means	 this	 language	 is
capable	of	executing	multiple	program	threads	at	a	time	or	concurrently.	A	single	Thread
is	 a	 light	 weight	 process	 that	 performs	 a	 particular	 task	 during	 its	 lifecycle	 until	 it	 is
terminated	 after	 that	 task	 completion.	Multithreading	 approach	 of	 programming	 has	 the
following	benefits.

	

							A	process	may	have	multiple	threads	which	share	the	same	data	space	within	the
main	 thread.	 Therefore,	 they	 can	 communicate	 with	 each	 other	 and	 can	 share
required	information	which	is	easier	with	less	performance	overhead	as	compared
to	separate	processes.

	 	 	 	 	 	 	As	 threads	 are	 light-weight	 processed	 therefore,	 they	 do	 not	 require	much
memory	overhead.	In	terms	of	memory	and	performance,	the	threads	are	cheaper
than	processes.

	

Each	thread	has	a	life	cycle	as	the	start,	the	execution	and	the	termination.	Each	thread	has
an	instruction	pointer	that	keeps	track	of	its	context	where	it	is	currently	running.

During	the	life	cycle	of	a	thread,	the	following	events	can	also	occur.

							A	Thread	can	be	pre-empted	or	interrupted.

	 	 	 	 	 	 	A	Thread	 can	 be	 put	 on	 hold	 temporarily	 or	 sleep	while	 other	 threads	 are
executing	or	running.	This	is	also	known	as	yielding.

	

Starting	a	New	Thread	using	“thread”	module

Python’s	“thread”	module	has	the	method	available	that	starts	a	new	thread.	Following	is
the	syntax	to	start	a	new	Thread	in	Python	programming	language.

	

thread.start_new_thread	(function,	args[,	kwargs])

	

Above	 method	 is	 used	 to	 create	 a	 new	 thread	 in	 both	 Linux	 and	 Windows	 operating
systems.	This	method	call	returns	instantly	and	the	child	thread	starts	to	call	the	function
that	is	passed	in	the	list	of	arguments	(args).	When	the	called	function	returns,	the	thread
will	be	terminated.	In	the	above	syntax,	the	args	is	a	tuple	of	arguments.	If	we	want	to	call
function	without	passing	any	arguments,	 then	we	may	pass	an	empty	 tuple	as	args.	The
parameter	kwargs	is	an	optional	dictionary	of	keyword	arguments.

	

	

	

	

The	Threading	Module

	

This	is	a	new	module	that	is	included	with	Python	2.4.	It	provides	much	more	powerful,
high-level	support	for	threads	than	the	“thread”	module	discussed	before.

The	“threading”	module	exposes	all	the	methods	that	are	present	in	the	“thread”	module
and	provides	some	additional	methods	as	follows.

	

	 	 	Method	threading.activeCount	():	This	method	returns	the	number	of	thread
objects	that	are	active.

	 	 	Method	 threading.currentThread	 ():	 This	 method	 returns	 the	 number	 of
thread	objects	in	the	caller’s	thread	control.

	 	 	Method	 threading.enumerate	 ():	 This	 method	 returns	 a	 list	 of	 all	 thread
objects	that	are	currently	active.

	

In	addition	to	these	methods,	the	threading	module	has	the	Thread	class	that	implements
threading.	Following	are	the	methods	provided	by	the	Thread	class.

	

	 	 	Method	run	():	The	run	()	method	of	the	Thread	class	is	the	entry	point	for	a
thread.

	 	 	Method	 start	 ():	 The	 start	 ()	method	 of	 the	Thread	 class	 starts	 a	 thread	 by
calling	the	run	method.

			Method	join	([time]):	The	join	()	method	of	the	Thread	class	waits	for	threads
to	terminate.

			Method	isAlive	():	The	isAlive	()	method	of	the	Thread	class	checks	whether	a
thread	is	still	executing.

	 	 	Method	getName	():	The	getName	()	method	of	the	Thread	class	 returns	 the
name	of	a	thread.

			Method	setName	():	The	setName	()	method	of	the	Thread	class	sets	the	name
of	a	thread.

	

Creating	Thread	Using	Threading	Module

Following	are	the	steps	to	implement	a	new	thread	using	the	threading	module.

	

							Firstly,	define	a	new	subclass	of	the	Thread	class.

							After	inheritance,	Override	the	__init__	(self	[,	args])	method	to	add	additional
arguments.

	 	 	 	 	 	 	Next,	 override	 the	 run	 (self	 [,	 args])	method	 to	 implement	what	 the	 thread
should	do	when	started.

	

After	doing	above	steps,	we	can	now	create	the	instance	of	subclass	and	then	start	a	new
thread	by	invoking	the	start	()	method,	which	in	turn	will	call	the	run	()	method.

Following	is	the	Thread	example	by	using	“threading”	threading	module	in	Python
language

Output

When	we	execute	the	above	Python	program,	we	will	observe	the	following	output.

	

Synchronizing	Threads	in	Python

The	 simple-to-implement	 locking	mechanism	 is	provided	 in	 the	 “threading”	module	of
Python	 that	 permits	 us	 to	 synchronize	 threads.	 It	 has	 following	 methods	 to	 achieve
Thread	synchronization.

	

							Method	Lock	():	When	this	method	is	called	it	returns	the	new	lock.

	 	 	 	 	 	 	Method	acquire	(blocking):	This	method	of	 the	new	 lock	object	 is	used	 to
force	threads	to	run	synchronously.	It	accepts	an	optional	blocking	parameter	that
enables	us	to	control	whether	the	thread	waits	to	acquire	the	lock.	If	the	value	of
blocking	is	set	to	0	then	the	thread	returns	immediately	with	a	0	value	if	the	lock
cannot	be	acquired	and	with	a	1	if	the	lock	was	acquired.	If	the	value	of	blocking
is	set	to	1	then	the	thread	blocks	and	wait	for	the	lock	to	be	released.

	 	 	 	 	 	 	Method	release	():	This	method	of	the	new	lock	object	is	used	to	release	the
lock	when	it	is	no	longer	required.

Let’s	understand	thread	synchronization	with	the	help	of	following	example.

Output

When	we	execute	the	above	Python	program,	we	will	observe	the	following	output.

Conclusion
	

Thank	 you,	 my	 hope	 is	 that	 after	 finishing	 this	 book	 I	 have	 given	 you	 some	 level	 of
understanding	of	Python	greater	than	what	you	had	before.	I	like	to	add	more	sections	and
more	information	to	my	books	over	time	based	on	what	my	readers	would	like	to	see.	I’d
love	to	hear	what	you	think	about	the	book	so	far	and	what	you	would	like	to	see	added.

