
Advanced SQL Techniques

1. Advanced Joins
LEFT JOIN, RIGHT JOIN, FULL OUTER JOIN

SELECT e.name, d.name
FROM employees e
FULL OUTER JOIN departments d
ON e.department_id = d.id;

2. Subqueries
Nested Queries:

SELECT name FROM employees WHERE age > (SELECT AVG(age) FROM employees);

3. Indexing
Importance of Indexes
Creating and Using Indexes:

CREATE INDEX idx_name ON employees(name);

4. Views
Creating and Querying Views:

CREATE VIEW employee_view AS
SELECT name, age FROM employees WHERE age > 30;

5. Stored Procedures
Example:

CREATE PROCEDURE GetEmployeeCount()
BEGIN
 SELECT COUNT(*) AS TotalEmployees FROM employees;
END;

6. Triggers
Example:

CREATE TRIGGER before_insert_employee
BEFORE INSERT ON employees
FOR EACH ROW
BEGIN
 IF NEW.age < 18 THEN
 SIGNAL SQLSTATE '45000' SET MESSAGE_TEXT = 'Age must be 18 or
above';

 END IF;
END;

7. Transactions
Using COMMIT and ROLLBACK:

START TRANSACTION;
UPDATE employees SET age = age + 1 WHERE id = 1;
ROLLBACK;

8. Window Functions
ROW_NUMBER(), RANK(), DENSE_RANK():

SELECT name, age, RANK() OVER (ORDER BY age DESC) AS Rank FROM
employees;

9. Advanced Data Types
JSON, ARRAY, etc.:

SELECT JSON_EXTRACT(json_column, '$.key') AS value FROM json_table;

10. Performance Optimization
Query Execution Plans (EXPLAIN)
Query Optimization Tips

	Advanced SQL Techniques
	1. Advanced Joins
	2. Subqueries
	3. Indexing
	4. Views
	5. Stored Procedures
	6. Triggers
	7. Transactions
	8. Window Functions
	9. Advanced Data Types
	10. Performance Optimization

