
Advanced SQL Techniques

1. Advanced Joins
LEFT JOIN, RIGHT JOIN, FULL OUTER JOIN

SELECT e.name, d.name
FROM employees e
FULL OUTER JOIN departments d
ON e.department_id = d.id;

2. Subqueries
Nested Queries:

SELECT name FROM employees WHERE age > (SELECT AVG(age) FROM employees);

3. Indexing
Importance of Indexes
Creating and Using Indexes:

CREATE INDEX idx_name ON employees(name);

4. Views
Creating and Querying Views:

CREATE VIEW employee_view AS
SELECT name, age FROM employees WHERE age > 30;

5. Stored Procedures
Example:

CREATE PROCEDURE GetEmployeeCount()
BEGIN
    SELECT COUNT(*) AS TotalEmployees FROM employees;
END;

6. Triggers
Example:

CREATE TRIGGER before_insert_employee
BEFORE INSERT ON employees
FOR EACH ROW
BEGIN
    IF NEW.age < 18 THEN
        SIGNAL SQLSTATE '45000' SET MESSAGE_TEXT = 'Age must be 18 or 
above';



    END IF;
END;

7. Transactions
Using COMMIT and ROLLBACK:

START TRANSACTION;
UPDATE employees SET age = age + 1 WHERE id = 1;
ROLLBACK;

8. Window Functions
ROW_NUMBER(), RANK(), DENSE_RANK():

SELECT name, age, RANK() OVER (ORDER BY age DESC) AS Rank FROM 
employees;

9. Advanced Data Types
JSON, ARRAY, etc.:

SELECT JSON_EXTRACT(json_column, '$.key') AS value FROM json_table;

10. Performance Optimization
Query Execution Plans (EXPLAIN)
Query Optimization Tips
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